Tricky Infinite Sum

Calculus Level 4

6 ( 1 2 + 1 2 0. 5 3 3 + ( 1 3 2 4 ) 0. 5 5 5 + ( 1 3 5 2 4 6 ) 0. 5 7 7 + ) = ? 6\left ( \frac{1}{2}+\frac{1}{2}\cdot\frac{0.5^{3}}{3}+\left ( \frac{1\cdot3}{2\cdot4} \right )\cdot\frac{0.5^{5}}{5}+\left ( \frac{1\cdot3\cdot5}{2\cdot4\cdot6} \right )\cdot\frac{0.5^{7}}{7}+\cdots \right ) = \, ?

π \pi ln ( 2 ) \ln(2) 2 2 \frac{\sqrt{2}}{2} e e

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Drex Beckman
Jan 14, 2016

The Taylor Series for arcsin can be written as: a r c s i n ( x ) = x + 1 2 x 3 3 + ( 1 3 2 4 ) x 5 5 + ( 1 3 5 2 4 6 ) x 7 7 + . . . arcsin(x)=x+\frac{1}{2}\cdot\frac{x^{3}}{3}+\left ( \frac{1\cdot3}{2\cdot4} \right )\cdot\frac{x^{5}}{5}+\left ( \frac{1\cdot3\cdot5}{2\cdot4\cdot6} \right )\cdot\frac{x^{7}}{7}+...

If we take the arcsin(0.5), we get π 6 \frac{\pi}{6} , so multiplying by 6 leaves us with π \pi .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...