Tricky integral

Calculus Level 3

0 ln ( 1 + x 2 ) 1 + x 2 d x = π ln ( k ) , k = ? \large \int _{ 0 }^{ \infty }{ \frac { \ln { (1+{ x }^{ 2 }) } }{ 1+{ x }^{ 2 } } } \, dx =\pi \ln {( k) } \quad , \quad k = \ ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = 0 ln ( 1 + x 2 ) 1 + x 2 d x I = \displaystyle \int_{0}^{\infty} \dfrac{\ln(1+x^2)}{1+x^2} dx

We make a substitution,

x = tan t d x = sec 2 t d t x = \tan t \Rightarrow dx = \sec^2t dt

Hence the limits change to 0 0 and π 2 \dfrac{\pi}{2}

I = 0 π 2 ln ( sec 2 t ) sec 2 t sec 2 t d t I = \displaystyle \int_{0}^{\frac{\pi}{2}} \dfrac{\ln (\sec^2t)}{\sec^2t} \sec^2t dt

I = 0 π 2 ( 2 ) ln cos t d t I = \displaystyle \int_{0}^{\frac{\pi}{2}} (-2)\ln \cos t dt

0 π 2 ln cos t d t = π 2 ln 2 \displaystyle \int_{0}^{\frac{\pi}{2}} \ln \cos t dt = \dfrac{\pi}{-2} \ln 2

Hence,

I = ( 2 ) π 2 ln 2 I = π ln 2 I = \displaystyle (-2) \dfrac{\pi}{-2} \ln 2 \Rightarrow I = \pi \ln 2

Incredible Mind
Jun 28, 2015

just sub x=tanu..then u get a very popular integral

Not that tricky. eh ?

Keshav Tiwari - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...