Tricky Integral

Calculus Level 3

1 3 e x ( 1 x ) x 2 d x \large \int_1^3 \dfrac{ e^x(1-x) } {x^2} \, dx

The value of the integral above has a simple closed form. Find the value of this closed form.

Give your answer to 3 decimal places.


The answer is -3.977.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Muhammad Ahmad
Mar 25, 2016

e x ( 1 x ) x 2 d x = e x x 2 d x e x x d x , l e t u = e x a n d d v = d x x 2 , d u = e x d x , v = 1 x , e x x 2 d x = u v v d u = e x x + e x x d x , e x x 2 ( 1 x ) d x = e x x + e x x d x e x x d x = e x x + C \int { { e }^{ x } } \frac { (1-x) }{ { x }^{ 2 } } dx=\int { \frac { { e }^{ x } }{ { x }^{ 2 } } } dx-\int { \frac { { e }^{ x } }{ x } dx } ,\quad let\quad u={ e }^{ x }\quad and\quad dv=\frac { dx }{ { x }^{ 2 } } ,\\ du={ e }^{ x }dx,\quad v=\frac { -1 }{ x } ,\quad \int { \frac { { e }^{ x } }{ { x }^{ 2 } } } dx=uv-\int { vdu= } \frac { { -e }^{ x } }{ x } +\int { \frac { { e }^{ x } }{ x } dx } ,\\ \int { \frac { { e }^{ x } }{ { x }^{ 2 } } (1-x)dx= } \frac { -{ e }^{ x } }{ x } +\int { \frac { { e }^{ x } }{ x } dx } -\int { \frac { { e }^{ x } }{ x } dx= } \frac { -{ e }^{ x } }{ x } +C

For computing 1 3 e x ( 1 x ) x 2 d x = 1 x e x ( 1 x ) e x + C \int_{1}^{3} \frac{e^x(1-x)}{x^2}\,dx = -\frac{1}{x}e^x(1-x)-e^{x}+C

Don't forget the a b = lim x b ( F ( x ) ) lim x a + ( F ( x ) ) \int_{a}^{b}= \lim_{x \to b^-}(F(x)) - \lim_{x \to a^+}(F(x))

That makes e e 3 3 = 3.97769 e-\frac{e^3}{3} = -3.97769 \square

FIN!!! \large \text{FIN!!!}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...