∫ 0 ∞ e x − 1 x 3 d x = b π a
The equation above holds true for integers a and b . Find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Good work. Use can use Ramanujan's Master theorem to solve this kind of problems
From the relation : Γ ( n ) ⋅ ζ ( n ) = ∫ 0 ∞ e t − 1 t n − 1 d t ⟹ Γ ( 4 ) ⋅ ζ ( 4 ) = ∫ 0 ∞ e t − 1 t 3 d t ⟹ 3 ! × 9 0 π 4 ⟹ 1 5 π 4 a + b = 1 9
Proof of the Relation provided by @Vatsalya Tandon
Wow, nice proof cum solution. (+1)
It would be 90 and not 60 in the denominator of the last step in the second line.
Problem Loading...
Note Loading...
Set Loading...
∫ 0 ∞ e x − 1 x 3 d x
∫ 0 ∞ 1 − e − x x 3 e − x d x
∫ 0 ∞ n = 0 ∑ ∞ x 3 e − x e − n x d x
n = 1 ∑ ∞ ∫ 0 ∞ x 3 e − n x d x
Let , u = n x
n = 1 ∑ ∞ ( n 4 1 ∫ 0 ∞ u 3 e − u d u )
( n = 1 ∑ ∞ n 4 1 ) ( ∫ 0 ∞ u 3 e − u d u )
n = 1 ∑ ∞ n 4 1 = 9 0 π 4
∫ 0 ∞ u 3 e − u d u = 3 !
∴ ∫ 0 ∞ e x − 1 x 3 d x = 1 5 π 4
a = 4 , b = 1 5
a + b = 1 9