Tricky Integrals - 1

Calculus Level 5

0 x 3 e x 1 d x = π a b \large \int_0 ^\infty \dfrac{x^3}{e^x - 1} \, dx = \dfrac{\pi^a}{b}

The equation above holds true for integers a a and b b . Find a + b a+b .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Vatsalya Tandon
Jul 27, 2016

0 x 3 e x 1 d x \int_{0}^{\infty} \frac{x^3}{e^x - 1} dx

0 x 3 e x 1 e x d x \int_{0}^{\infty} \frac{x^3 e^{-x}}{1-e^{-x}} dx

0 n = 0 x 3 e x e n x d x \int_{0}^{\infty} \sum_{n=0}^{\infty} x^3 e^{-x}{e^{-nx}}dx

n = 1 0 x 3 e n x d x \sum_{n=1}^{\infty} \int_{0}^{\infty} x^3 {e^{-nx}} dx

Let , u = n x \text{Let} , u = nx

n = 1 ( 1 n 4 0 u 3 e u d u ) \sum_{n=1}^{\infty} (\frac{1}{n^4} \int_{0}^{\infty} u^3 e^{-u} du)

( n = 1 1 n 4 ) ( 0 u 3 e u d u ) (\sum_{n=1}^{\infty}\frac{1}{n^4}) (\int_{0}^{\infty} u^3 e^{-u} du)

n = 1 1 n 4 = π 4 90 \sum_{n=1}^{\infty}\frac{1}{n^4} = \frac{\pi^4}{90}

0 u 3 e u d u = 3 ! \int_{0}^{\infty} u^3 e^{-u} du = 3!

0 x 3 e x 1 d x = π 4 15 \therefore \int_{0}^{\infty} \frac{x^3}{e^x - 1} dx = \frac{\pi^4}{15}

a = 4 , b = 15 a = 4, b=15

a + b = 19 a+b = 19

Good work. Use can use Ramanujan's Master theorem to solve this kind of problems

Refaat M. Sayed - 4 years, 10 months ago
Sabhrant Sachan
Jul 27, 2016

From the relation : Γ ( n ) ζ ( n ) = 0 t n 1 e t 1 d t Γ ( 4 ) ζ ( 4 ) = 0 t 3 e t 1 d t 3 ! × π 4 90 π 4 15 a + b = 19 \text{From the relation : } \Gamma{(n)}\cdot \zeta{(n)} = \displaystyle\int_{0}^{\infty} \dfrac{t^{n-1}}{e^{t}-1} dt \\ \implies \Gamma{(4)}\cdot \zeta{(4)} = \displaystyle\int_{0}^{\infty} \dfrac{t^{3}}{e^{t}-1} dt \implies 3! \times \dfrac{\pi^{4}}{90} \\ \implies \boxed{ \dfrac{\pi^{\color{#3D99F6}{4}}}{\color{#D61F06}{15}} } \\ a+b=\boxed{19}


Proof of the Relation provided by @Vatsalya Tandon

Wow, nice proof cum solution. (+1)

Ashish Menon - 4 years, 10 months ago

It would be 90 and not 60 in the denominator of the last step in the second line.

Vatsalya Tandon - 4 years, 10 months ago

Log in to reply

Yes , thank you 😃

Sabhrant Sachan - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...