Tricky Integrals [Part 1]

Calculus Level 4

0 π / 4 ln ( tan x + 1 ) d x \large \int _{ 0 }^{ { \pi }/{ 4 } }{ \ln { \left( \tan { x } +1 \right) } }~ {dx}

If the integral above is equal to π A ln B \dfrac{\pi}{A}\ln{B} , where A A and B B are integers and B B is prime, find A B {A}^{B} .


The answer is 64.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Pulkit Gupta
Dec 25, 2015

Note that ( 1 + tan ( π 4 θ ) \large 1 + \tan (\frac{\pi}{4} - \theta) ) * ( 1 + tan θ \large 1 + \tan \theta ) = 2.

We then write 2I = 0 π / 4 ln 2 d x \large \int _{ 0 }^{ { \pi }/{ 4 } }{ \ln { 2} }~ {dx} . Simplify.

Ajay Saju
Dec 25, 2015

hope you found it useful!

Anubhav Tyagi
Dec 21, 2016

I = 0 π 4 ln ( 1 + tan x ) d x ( 1 ) I = 0 π 4 ln ( 1 + tan ( π 4 x ) ) d x = 0 π 4 ln ( 1 + 1 tan x 1 + tan x ) d x I = 0 π 4 ln ( 2 1 + tan x ) d x ( 2 ) Adding (1) and(2) 2I = 0 π 4 ln ( ( 1 + tan x ) × ( 2 1 + tan x ) ) d x = 0 π 4 ln ( 2 ) = π 4 ln ( 2 ) I = π 8 ln ( 2 ) \begin{aligned} &\text{I}= \int_{0}^{\frac{\pi}{4}}\ln\bigg(1+\tan x\bigg)dx &&(1)\\ &\text{I}= \int_{0}^{\frac{\pi}{4}}\ln\bigg(1+\tan\big(\frac{\pi}{4} -x\big)\bigg)dx =\int_{0}^{\frac{\pi}{4}}\ln\bigg(1+\frac{1-\tan x}{1+\tan x}\bigg)dx\\ &\text{I}=\int_{0}^{\frac{\pi}{4}}\ln\bigg(\frac{2}{1+\tan x}\bigg)dx && (2)\\ &\text{Adding (1) and(2)} \\ &\text{2I}= \int_{0}^{\frac{\pi}{4}}\ln\bigg(\big(1+\tan x\big)\times\big(\frac{2}{1+\tan x}\big)\bigg)dx= \int_{0}^{\frac{\pi}{4}}\ln(2)=\frac{\pi}{4}\ln(2)\\ &\text{I}=\frac{\pi}{8}\ln(2)\\ \end{aligned}

@Pi Han Goh - Check this one as well

Anubhav Tyagi - 4 years, 5 months ago

Nice solution!

Michael Fuller - 4 years, 5 months ago

Log in to reply

Thanks. good to know that people liked it

Anubhav Tyagi - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...