Tricky Limit when u use Riemann Sum and Cesaro

Calculus Level 3

lim n [ ( 1 n ) n + ( 2 n ) n + ( 3 n ) n + + ( n n ) n ] \displaystyle \lim_{n\rightarrow \infty} \left[ \left(\frac{1}{n}\right)^{n}+\left(\frac{2}{n}\right)^{n}+\left(\frac{3}{n}\right)^{n}+\cdots +\left(\frac{n}{n}\right)^{n} \right]

Find the closed form of the limit above to 3 decimal places.


The answer is 1.5819.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

lim n [ ( 1 n ) n + ( 2 n ) n + ( 3 n ) n + + ( n n ) n ] = lim n k = 1 n ( k n ) n \displaystyle \lim_{n\rightarrow \infty} \left[ \left(\frac{1}{n}\right)^{n}+\left(\frac{2}{n}\right)^{n}+\left(\frac{3}{n}\right)^{n}+\cdots +\left(\frac{n}{n}\right)^{n} \right] =\displaystyle \lim_{n\rightarrow\infty} \sum_{k=1}^{n} \left(\frac{k}{n} \right)^{n} = lim n k = 0 n 1 ( 1 k n ) n =\displaystyle \lim_{n\rightarrow\infty} \sum_{k=0}^{n-1} \left(1 - \frac{k}{n} \right)^{n} Use Formula lim x ( 1 + 1 x ) x = e \displaystyle \lim_{x\rightarrow \infty} \left( 1+\frac{1}{x} \right)^{x}=e we have lim n k = 0 n ( 1 k n ) n = lim n k = 0 n ( lim n ( 1 + 1 1 k n ) 1 k n ) k \displaystyle \lim_{n\rightarrow\infty} \sum_{k=0}^{n} \left(1 - \frac{k}{n} \right)^{n} = \displaystyle \lim_{n\rightarrow\infty} \sum_{k=0}^{n} \left( \lim_{n\rightarrow\infty} \left(1 + \frac{1}{\frac{-1}{k} n} \right)^{\frac{-1}{k} n} \right)^{-k} = lim n k = 0 n 1 e k \displaystyle =\lim_{n\rightarrow\infty} \sum_{k=0}^{n-1} e^{-k} = k = 0 e k \displaystyle =\sum_{k=0}^{\infty} e^{-k} Use infinite geometric sequence we get = k = 0 e k = 1 + 1 e + 1 e 2 + 1 e 3 + = 1 1 1 e = e e 1 1.5819... \displaystyle =\sum_{k=0}^{\infty} e^{-k}=1+\frac{1}{e}+\frac{1}{e^{2}}+\frac{1}{e^{3}}+\cdots = \frac{1}{\displaystyle 1-\frac{1}{e}}=\boxed{\displaystyle \frac{e}{e-1}}\approx 1.5819...

Can u xplain the second line ?

Kushal Bose - 4 years, 2 months ago

Log in to reply

i have edited , start from k = 0 k=0 to n 1 n-1 not n n

uzumaki nagato tenshou uzumaki - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...