Fancy Triangle

Calculus Level 5

Let a a and b b be the lengths of the semi-major and semi-minor axes of an ellipse, respectively.

Find the area enclosed by the locus of the centroids of equilateral triangles inscribed in the ellipse.

π a b ( a 2 b 2 ) 2 2 ( a 2 + 3 b 2 ) ( b 2 + 3 a 2 ) \dfrac{\pi ab(a^2-b^2)^2}{2(a^2+3b^2)(b^2+3a^2)} π a b ( a 2 b 2 ) 2 ( a 2 + 3 b 2 ) ( b 2 + 3 a 2 ) \dfrac{\pi ab(a^2-b^2)^2}{(a^2+3b^2)(b^2+3a^2)} π a 2 b 2 ( a 2 b 2 ) 2 ( a 2 + 3 b 2 ) ( b 2 + 3 a 2 ) \dfrac{\pi a^2b^2(a^2-b^2)}{2(a^2+3b^2)(b^2+3a^2)} π a 2 b 2 ( a 2 b 2 ) ( a 2 + 3 b 2 ) ( b 2 + 3 a 2 ) \dfrac{\pi a^2b^2(a^2-b^2)}{(a^2+3b^2)(b^2+3a^2)}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jul 9, 2019

Suppose that the centroid of such an equilateral triangle has coordinates ( x , y ) (x,y) , so that the three vertices of the equilateral triangle have coordinates P j ( x + r cos ( θ + 2 π j 3 ) , y + r sin ( θ + 2 π j 3 ) ) j = 0 , 1 , 2 P_j \;\; \big(x + r\cos\big(\theta + \tfrac{2\pi j}{3}\big),y + r\sin\big(\theta + \tfrac{2\pi j}{3}\big)\big) \hspace{2cm} j = 0,1,2 for some r > 0 r > 0 and 0 θ < 2 π 0 \le \theta < 2\pi . Then x , y , r , θ x,y,r,\theta must satisfy the equations F 0 ( x , y , r , θ ) = F 1 ( x , y , r , θ ) = F 2 ( x , y , r , θ ) = 1 F_0(x,y,r,\theta) \; = \; F_1(x,y,r,\theta) \; = \; F_2(x,y,r,\theta) \; = \; 1 where F j ( x , y , r , θ ) = ( x + r cos ( θ + 2 π j 3 ) ) 2 a 2 + ( y + r sin ( θ + 2 π j 3 ) ) 2 b 2 F_j(x,y,r,\theta) \; = \; \frac{\big(x + r\cos\big(\theta+\frac{2\pi j}{3}\big)\big)^2}{a^2} + \frac{\big(y + r\sin\big(\theta+\frac{2\pi j}{3}\big)\big)^2}{b^2} The equation F 1 ( x , y , r , θ ) = F 2 ( x , y , r , θ ) F_1(x,y,r,\theta) = F_2(x,y,r,\theta) leads to the equation 2 b 2 x sin θ + 2 a 2 y cos θ = ( a 2 b 2 ) r sin θ cos θ - 2b^2x\sin\theta + 2a^2y\cos\theta \; = \; (a^2-b^2)r\sin\theta\cos\theta while the equation 2 F 0 ( x , y , r , θ ) = F 1 ( x , y , r , θ ) + F 2 ( x , y , r , θ ) 2F_0(x,y,r,\theta) = F_1(x,y,r,\theta) + F_2(x,y,r,\theta) leads to the equation 4 b 2 x cos θ + 4 a 2 y sin θ = ( a 2 b 2 ) r cos 2 θ 4b^2x\cos\theta + 4a^2y\sin\theta \; = \; (a^2-b^2)r\cos2\theta and hence we deduce that x = a 2 b 2 4 b 2 r cos 3 θ y = a 2 b 2 4 a 2 r sin 3 θ x \; = \; \frac{a^2-b^2}{4b^2}r\cos3\theta \hspace{2cm} y \; = \; \frac{a^2-b^2}{4a^2}r\sin3\theta The equation F 0 ( x , y , r , θ ) = 1 F_0(x,y,r,\theta) = 1 can now be solved to obtain r r as a function of θ \theta , and the end result of all this is that the coordinates of the centroid lie on the ellipse x 2 A 2 + y 2 B 2 = 1 \frac{x^2}{A^2} + \frac{y^2}{B^2} \; = \; 1 where A = a ( a 2 b 2 ) a 2 + 3 b 2 B = b ( a 2 b 2 ) 3 a 2 + b 2 A \; = \; \frac{a(a^2-b^2)}{a^2+3b^2} \hspace{2cm} B \; = \; \frac{b(a^2-b^2)}{3a^2+b^2} and so the area enclosed by this ellipse is π A B = π a b ( a 2 b 2 ) 2 ( 3 a 2 + b 2 ) ( a 2 + 3 b 2 ) \pi AB \; = \; \boxed{\frac{\pi ab(a^2-b^2)^2}{(3a^2+b^2)(a^2+3b^2)}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...