Tricky Problem

Algebra Level 4

If ( w + 1 ) ( w 1 ) (w+1)(w-1) = w w

... then find the value of: w 20 w^{20} + + w 20 w^{-20}


The answer is 15127.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Pi Han Goh
Sep 2, 2014

Simplify the equation and division by w w gives w 1 w = 1 ( w 1 w ) 2 = 1 w 2 + 1 w 2 = 3 \large w - \frac {1}{w} = 1 \Rightarrow (w - \frac {1}{w})^2 = 1 \Rightarrow w^2 + \frac {1}{w^2} = 3

Squaring both sides of the equation and subtract both sides by 2 2 repeatedly gives the following

w 4 + 1 w 4 = 7 , w 8 + 1 w 8 = 47 , w 16 + 1 w 16 = 2207 \large w^4 + \frac {1}{w^4} = 7, w^8 + \frac {1}{w^8} = 47, w^{16} + \frac {1}{w^{16}} = 2207

Consider

( w 16 + 1 w 16 ) ( w 4 + 1 w 4 ) = ( w 20 + 1 w 20 ) + ( w 12 + 1 w 12 ) \large \left ( w^{16} + \frac {1}{w^{16}} \right ) \left ( w^4 + \frac {1}{w^{4}} \right ) = \left ( w^{20} + \frac {1}{w^{20}} \right ) + \left ( w^{12} + \frac {1}{w^{12}} \right ) 2207 7 = ( w 20 + 1 w 20 ) + ( w 4 + 1 w 4 ) 3 3 ( w 4 + 1 w 4 ) \large \Rightarrow 2207 \cdot 7 = \left ( w^{20} + \frac {1}{w^{20}} \right ) + \left ( w^4 + \frac {1}{w^4} \right )^3 - 3 \left ( w^4 + \frac {1}{w^4} \right ) w 20 + 1 w 20 = 2207 7 7 3 + 3 7 = 15127 \large \Rightarrow w^{20} + \frac {1}{w^{20} } = 2207 \cdot 7 - 7^3 + 3 \cdot 7 = \boxed{15127}

actually this question has already been posted before by Aditya Raut. JOMO 7 short 2 , nice solution though

Vishwesh Ramanathan - 6 years, 8 months ago

Given that: ( w + 1 ) ( w 1 ) = w . . . ( 1 ) (w+1)(w-1)=w\quad ...(1)

w 2 w 1 = 0 w = 1 ± 5 2 \Rightarrow w^2-w-1 =0 \quad \Rightarrow w = \frac{1\pm \sqrt{5}}{2}

Of course, we can use a calculator and find w 20 + w 20 w^{20}+w^{-20} , but that is not really an algebraic solution. I am giving a more algebraic solution here.

Dividing (1) by w : w 1 w = 1 w: \quad \boxed{w - \dfrac{1}{w} = 1}

w 1 = 1 w w + 1 w = 2 w 1 = ± 5 w-1=\dfrac{1}{w}\quad \Rightarrow \boxed{w+\dfrac{1}{w}} =2w-1=\boxed{\pm \sqrt{5}}

w 2 1 w 2 = ( w 1 w ) ( w + 1 w ) = ± 5 \boxed{w^2 - \dfrac{1}{w^2}} = \left( w - \dfrac{1}{w} \right) \left( w + \dfrac{1}{w} \right) = \boxed{\pm \sqrt{5}}

( w 1 w ) 2 = 1 2 w 2 2 + 1 w 2 = 1 w 2 + 1 w 2 = 3 \left( w - \dfrac{1}{w}\right)^2 = 1^2\quad \Rightarrow w^2 -2 +\dfrac{1}{w^2} = 1\quad \Rightarrow \boxed{ w^2 + \dfrac{1}{w^2} = 3}

( w 2 1 w 2 ) ( w + 1 w ) = w 3 + w 1 w 1 w 3 = ( ± 5 ) ( ± 5 ) \left( w^2 - \dfrac{1}{w^2} \right) \left( w + \dfrac{1}{w} \right) = w^3 + w - \dfrac{1}{w} - \dfrac{1}{w^3} = (\pm \sqrt{5})(\pm \sqrt{5})

w 3 1 w 3 = 4 \Rightarrow \boxed{w^3 - \dfrac{1}{w^3} = 4}

( w 3 1 w 3 ) ( w 2 + 1 w 2 ) = w 5 + w 1 w 1 w 5 = ( 4 ) ( 3 ) \left( w^3 - \dfrac{1}{w^3} \right) \left( w^2 + \dfrac{1}{w^2} \right) = w^5 + w - \dfrac{1}{w} - \dfrac{1}{w^5} = (4)(3)

w 5 1 w 5 = 11 \Rightarrow \boxed{w^5 - \dfrac{1}{w^5} = 11}

( w 3 1 w 3 ) ( w 2 1 w 2 ) = w 5 w 1 w + 1 w 5 = ( 4 ) ( ± 5 ) \left( w^3 - \dfrac{1}{w^3} \right) \left( w^2 - \dfrac{1}{w^2} \right) = w^5 - w - \dfrac{1}{w} + \dfrac{1}{w^5} = (4)(\pm \sqrt{5})

w 5 + 1 w 5 = ± 5 5 \Rightarrow \boxed{w^5 + \dfrac{1}{w^5} = \pm 5\sqrt{5}}

w 10 1 w 10 = ( w 5 1 w 5 ) ( w 5 + 1 w 5 ) = ( 11 ) ( ± 5 5 ) = ± 55 5 \boxed{w^{10} - \dfrac{1}{w^{10}}} = \left( w^5 - \dfrac{1}{w^5} \right) \left( w^5 + \dfrac{1}{w^5} \right) = (11)(\pm 5\sqrt{5}) = \boxed{\pm 55\sqrt{5}}

( w 10 1 w 10 ) 2 = w 20 2 + 1 w 20 = ( 5 5 2 ) ( 5 ) = 15125 \left( w^{10} - \dfrac{1}{w^{10}} \right) ^2 = w^{20} - 2 + \dfrac{1}{w^{20}} = (55^2)(5) = 15125

w 20 + 1 w 20 = 15125 + 2 = 15127 \Rightarrow w^{20} + \dfrac{1}{w^{20}} = 15125+2 =\boxed{15127}

Syed Shahabudeen
Mar 16, 2016

20th lucas number

If f(n)=w^n+1/w^n, as w-1/w=1,implies f(2)=1^2+2=3, f(4)=3^2-2=7 , f(4)*f(2)=f(6)-f(2) implies f(6)=18 Again f(6)* f(4)=f(10)+f(2) implies f(10)=123 -Finally, f(20)=f^2(10)-2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...