Tricky Quadratic Logarithm

Algebra Level 3

log 4 x 2 + log x 16 5 < 0 \log_{4} x^2\ + \log_{x} 16\ - 5 < 0

How many positive integer solutions can satisfy the inequality above?


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Feb 18, 2016

log 4 x 2 + log x 16 5 < 0 log 4 x 2 + log 4 16 log 4 x 5 < 0 2 log 4 x + 2 log 4 x 5 < 0 2 log 4 2 x 5 log 4 x + 2 < 0 ( 2 log 4 x 1 ) ( log 4 x 2 ) < 0 ( x 2 ) ( x 16 ) < 0 \begin{aligned} \log_4 x^2 + \log_x 16 - 5 & < 0 \\ \log_4 x^2 + \frac{\log_4 16}{\log_4 x} - 5 & < 0 \\ 2 \log_4 x + \frac{2}{\log_4 x} - 5 & < 0 \\ 2 \log_4^2 x - 5 \log_4 x + 2 & < 0 \\ \left(2\log_4 x - 1 \right) \left(\log_4 x - 2 \right) & < 0 \\ \Rightarrow (x - 2)(x -16) & < 0 \end{aligned}

Therefore, the integer solutions are 3 , 4 , 5 , . . . 15 3,4,5,...15 , a total of 13 \boxed{13} solutions.

Nice solution. One thing to watch out though is that when multiplying log 4 x \log_{4} x both sides in equality, we're assuming it's positive; otherwise, the sign will switch. However, the negative value of such log only happens when 0 < x < 1 0<x<1 , which is not in our interest. ;)

Worranat Pakornrat - 5 years, 3 months ago

log 4 x 2 + log x 16 5 < 0 \log_{4} x^2\ + \log_{x} 16\ - 5 < 0

2 log 4 x + 2 log x 4 4 1 < 0 2\log_{4} x\ + 2\log_{x} 4\ - 4 - 1 < 0

2 log 4 x + 2 log x 4 4 ( log 4 x ) ( log x 4 ) < 0 2\log_{4} x\ + 2\log_{x} 4\ - 4 - (\log_{4} x)(\log_{x} 4) < 0

Substitute A A = log 4 x \log_{4} x and B B = log x 4 \log_{x} 4 :

2 A + 2 B 4 A B < 0 2A + 2B - 4 - AB < 0

0 < A B 2 A 2 B + 4 0 < AB - 2A - 2B + 4

0 < ( A 2 ) ( B 2 ) 0 < (A - 2)(B - 2)

0 < ( log 4 x 2 ) ( log x 4 2 ) 0 < (\log_{4} x\ - 2)(\log_{x} 4\ - 2)

A A = log 4 x = 2 \log_{4} x = 2 when x = 16 x = 16 , and B B = log x 4 = 2 \log_{x} 4 = 2 when x = 2 x = 2 .

Now if x > 16 x > 16 , then A 2 > 0 A - 2 > 0 but B 2 < 0 B - 2 < 0 .

If 2 2 < x x < 16 16 , then A 2 < 0 A - 2 < 0 and B 2 < 0 B - 2 < 0 .

If x < 2 x < 2 , then A 2 < 0 A - 2 < 0 but B 2 > 0 B - 2 > 0 .

Hence, the positive integer solutions will be in the domain (2 , 16) or x x ϵ \epsilon {3 , 4 , 5 , 6 ,..., 14 , 15} .

As a result, there are 13 \boxed{13} positive integer solutions to this logarithm inequality.

Graphing, the curve crosses y=0 at x=2 and x=16 , remaining y<0 in this range. \therefore x=3, 4, . . . 15. Quant 13 integer x.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...