lo g 4 x 2 + lo g x 1 6 − 5 < 0
How many positive integer solutions can satisfy the inequality above?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice solution. One thing to watch out though is that when multiplying lo g 4 x both sides in equality, we're assuming it's positive; otherwise, the sign will switch. However, the negative value of such log only happens when 0 < x < 1 , which is not in our interest. ;)
lo g 4 x 2 + lo g x 1 6 − 5 < 0
2 lo g 4 x + 2 lo g x 4 − 4 − 1 < 0
2 lo g 4 x + 2 lo g x 4 − 4 − ( lo g 4 x ) ( lo g x 4 ) < 0
Substitute A = lo g 4 x and B = lo g x 4 :
2 A + 2 B − 4 − A B < 0
0 < A B − 2 A − 2 B + 4
0 < ( A − 2 ) ( B − 2 )
0 < ( lo g 4 x − 2 ) ( lo g x 4 − 2 )
A = lo g 4 x = 2 when x = 1 6 , and B = lo g x 4 = 2 when x = 2 .
Now if x > 1 6 , then A − 2 > 0 but B − 2 < 0 .
If 2 < x < 1 6 , then A − 2 < 0 and B − 2 < 0 .
If x < 2 , then A − 2 < 0 but B − 2 > 0 .
Hence, the positive integer solutions will be in the domain (2 , 16) or x ϵ {3 , 4 , 5 , 6 ,..., 14 , 15} .
As a result, there are 1 3 positive integer solutions to this logarithm inequality.
Graphing, the curve crosses y=0 at x=2 and x=16 , remaining y<0 in this range. ∴ x=3, 4, . . . 15. Quant 13 integer x.
Problem Loading...
Note Loading...
Set Loading...
lo g 4 x 2 + lo g x 1 6 − 5 lo g 4 x 2 + lo g 4 x lo g 4 1 6 − 5 2 lo g 4 x + lo g 4 x 2 − 5 2 lo g 4 2 x − 5 lo g 4 x + 2 ( 2 lo g 4 x − 1 ) ( lo g 4 x − 2 ) ⇒ ( x − 2 ) ( x − 1 6 ) < 0 < 0 < 0 < 0 < 0 < 0
Therefore, the integer solutions are 3 , 4 , 5 , . . . 1 5 , a total of 1 3 solutions.