Tricky Quartic!

Algebra Level 4

( x 2 + 3 x + 7 ) ( x 2 + 5 x + 2 ) = 0 (x^{2}+3x + 7)(x^{2}+5x+2)=0 If α \alpha , β \beta , γ \gamma , and δ \delta are the roots of equation above, then find ( α 2 + 1 ) ( β 2 + 1 ) ( γ 2 + 1 ) ( δ 2 + 1 ) . (\alpha ^{2}+1)(\beta ^{2}+1)(\gamma ^{2}+1)(\delta ^{2}+1).


The answer is 1170.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let the equation x 2 + 3 x + 7 = 0 \displaystyle x^2+3x+7=0 has roots α , β \alpha,\beta & the equation x 2 + 5 x + 2 = 0 \displaystyle x^2+5x+2=0 has roots γ , δ \gamma,\delta

A substitution x = y 1 \displaystyle x=\sqrt{y-1} transforms the equation x 2 + 3 x + 7 = 0 \displaystyle x^2+3x+7=0 to y 2 + 3 y + 45 = 0 \displaystyle y^2+3y+45=0 with roots α 2 + 1 , β 2 + 1 \displaystyle \alpha^2+1,\beta^2+1 and by Vieta's we know , ( α 2 + 1 ) ( β 2 + 1 ) = 45 \displaystyle (\alpha^2+1)(\beta^2+1)=45

Similarly the same substitution makes the second equation y 2 23 y + 26 = 0 \displaystyle y^2-23y+26=0 with roots γ 2 + 1 , δ 2 + 1 \displaystyle \gamma^2+1,\delta^2+1 and the product is 26 26

Thus ( α 2 + 1 ) ( β 2 + 1 ) ( γ 2 + 1 ) ( δ 2 + 1 ) = 26 × 45 = 1170 \displaystyle (\alpha^2+1)(\beta^2+1)(\gamma^2+1)(\delta^2+1)=26\times 45=\boxed{1170}

Alternate approach:

Put x=i and then x=-i and then multiply the equations.

Harsh Shrivastava - 4 years, 9 months ago

x 2 + 3 x + 7 = 0 \implies x^2+3x+7=0

Using Vieta's formula .

α + β = 3 • \ \color{#20A900}{\alpha+\beta}=-3

α β = 7 • \ \color{#3D99F6}{\alpha \beta}=7

x 2 + 5 x + 2 = 0 \implies x^2+5x+2=0

Again, Using Vieta's formula .

γ + δ = 5 • \ \color{#D61F06}{\gamma+\delta}=-5

γ δ = 2 • \ \color{#EC7300}{\gamma \delta}=2

We have to find:

( α 2 + 1 ) ( β 2 + 1 ) ( γ 2 + 1 ) ( δ 2 + 1 ) \implies (\alpha ^{2}+1)(\beta ^{2}+1)(\gamma ^{2}+1)(\delta ^{2}+1)

= [ ( α β ) 2 + α 2 + β 2 + 1 ] [ ( γ δ ) 2 + γ 2 + δ 2 + 1 ] =\left[(\alpha \beta)^2+\alpha^2+\beta^2+1\right]\left[(\gamma \delta)^2+\gamma^2+\delta^2+1\right]

= [ ( α β ) 2 + ( α + β ) 2 2 α β + 1 ] [ ( γ δ ) 2 + ( γ + δ ) 2 2 γ δ + 1 ] =\left[(\color{#3D99F6}{\alpha \beta})^2+(\color{#20A900}{\alpha+\beta})^2-2\color{#3D99F6}{\alpha \beta}+1\right] \left[(\color{#EC7300}{\gamma \delta})^2+(\color{#D61F06}{\gamma+\delta})^2-2\color{#EC7300}{\gamma \delta}+1\right]

= [ ( 7 ) 2 + ( 3 ) 2 2 ( 7 ) + 1 ] [ ( 2 ) 2 + ( 5 ) 2 2 ( 2 ) + 1 ] =\left[(7)^2+(-3)^2-2(7)+1\right]\left[(2)^2+(-5)^2-2(2)+1\right]

45 × 26 = 1170 \implies 45×26=\color{#BA33D6}{\boxed{1170}} .

Aaron Jerry Ninan
Sep 16, 2016

There is one more elegant solution. Write the equation in the form (x-a)(x-b)(x-c)(x-d).where a, b, c, d, are the roots of the equation. put x= I (root of -1) and x=-I (-×root of -1). Multiply the two results together to get , (a2-1)(b2-1)(c2-1)(d2-1).this implies putting x=I and -I in our original equation will give our desired result .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...