Tricky Sum 1.0

Calculus Level 5

n = 1 csc 2 ( ω π n ) = A π + B \displaystyle \sum_{n=1}^\infty \csc^2\left(\omega\pi n\right)=\dfrac{A}{\pi}+B

In the above equation, ω = 1 2 + 3 2 i \omega=-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i and, A A and B B are algebraic numbers . Find A 2 B 2 \dfrac{A^2}{B^2} .

Note: i = 1 i=\sqrt{-1} is the imaginary unit.


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Aug 5, 2020

Firstly, note that sin 2 ( ω π n ) = { sinh 2 ( 1 2 3 π n ) n e v e n cosh 2 ( 1 2 3 π n ) n o d d \sin^2(\omega\pi n) \;= \; \left\{ \begin{array}{lll} -\sinh^2\left(\tfrac12\sqrt{3}\pi n\right) &\hspace{1cm} & n\; \mathrm{even} \\[1ex] \cosh^2\left(\tfrac12\sqrt{3}\pi n\right) & & n\; \mathrm{odd} \end{array}\right. and hence n = 1 csc 2 ( ω π n ) = n = 1 s e c h 2 ( 3 π ( n 1 2 ) ) n = 1 c o s e c h 2 ( 3 π n ) = S 1 S 2 \sum_{n=1}^\infty \csc^2(\omega \pi n) \; = \; \sum_{n=1}^\infty \mathrm{sech}^2\big(\sqrt{3}\pi (n-\tfrac12)\big) - \sum_{n=1}^\infty \mathrm{cosech}^2\big(\sqrt{3}\pi n\big) \; = \; S_1 - S_2 To evaluate S 1 S_1 and S 2 S_2 , we need to handle so-called singular values of the complete elliptic integral of the first kind K ( k ) = 0 1 2 π d θ 1 k 2 sin 2 θ 0 < k < 1 \mathsf{K}(k) \; = \; \int_0^{\frac12\pi}\frac{d\theta}{\sqrt{1 - k^2\sin^2\theta}} \hspace{2cm} 0 < k < 1 and its complementary function K ( k ) = K ( 1 k 2 ) \mathsf{K}'(k) \; = \; \mathsf{K}\big(\sqrt{1-k^2}\big) A singular value k r k_r of the elliptic integral is one for which K ( k r ) K ( k r ) = r r N \frac{\mathsf{K}'(k_r)}{\mathsf{K}(k_r)} \; = \; \sqrt{r} \hspace{2cm} r \in \mathbb{N} We are interested in k 3 = 1 2 2 ( 3 1 ) k_3 =\tfrac1{2\sqrt{2}}(\sqrt{3}-1) , and we have an expression for the complete elliptic integral of the second kind E ( k 3 ) = π 4 3 K ( k 3 ) + 3 + 1 2 3 K ( k 3 ) \mathsf{E}(k_3) \; = \; \frac{\pi}{4\sqrt{3}\mathsf{K}(k_3)} + \frac{\sqrt{3}+1}{2\sqrt{3}}\mathsf{K}(k_3) given the value of the elliptic alpha function α ( 3 ) = 1 2 ( 3 1 ) \alpha(3) = \tfrac12(\sqrt{3}-1) . In fact it is possible to express K ( k 3 ) \mathsf{K}(k_3) exactly in terms of Gamma functions, K ( k 3 ) = 3 1 4 Γ 3 ( 1 3 ) 2 7 3 π \mathsf{K}(k_3) \; = \; \frac{3^{\frac14}\Gamma^3(\frac13)}{2^{\frac73}\pi} but this is not needed here.

Using the results of this paper and the above observations (note that this paper writes elliptic integral expressions in term of m = k 2 m = k^2 instead of k k ), we obtain S 1 = 2 K ( k 3 ) E ( k 3 ) π 2 2 ( 1 k 3 2 ) K ( k 3 ) 2 π 2 = 1 2 π 3 1 2 3 K ( k 3 ) 2 π 2 S 2 = 1 6 + 2 3 ( 2 k 3 2 ) K ( k 3 ) 2 π 2 2 K ( k 3 ) E ( k 3 ) π 2 = 1 6 1 2 π 3 1 2 3 K ( k 3 ) 2 π 2 \begin{aligned} S_1 & = \; \frac{2\mathsf{K}(k_3)\mathsf{E}(k_3)}{\pi^2} - 2(1 - k_3^2)\frac{\mathsf{K}(k_3)^2}{\pi^2} \; = \; \frac{1}{2\pi\sqrt{3}} - \frac{1}{2\sqrt{3}}\,\frac{\mathsf{K}(k_3)^2}{\pi^2} \\ S_2 & = \; \tfrac16+ \tfrac23(2 - k_3^2)\frac{\mathsf{K}(k_3)^2}{\pi^2} - \frac{2\mathsf{K}(k_3)\mathsf{E}(k_3)}{\pi^2} \; = \; \frac16 - \frac{1}{2\pi\sqrt{3}} - \frac{1}{2\sqrt{3}}\,\frac{\mathsf{K}(k_3)^2}{\pi^2} \end{aligned} so that n = 1 csc 2 ( ω π n ) = S 1 S 2 = 1 π 3 1 6 \sum_{n=1}^\infty \csc^2(\omega \pi n) \; = \; S_1 - S_2 \; = \; \frac{1}{\pi\sqrt{3}} - \frac16 Thus A = 1 3 A = \frac{1}{\sqrt{3}} and B = 1 6 B = -\tfrac16 , so that A 2 B 2 = 12 \tfrac{A^2}{B^2} =\boxed{12} .

The actual answer is 1 π 3 1 6 \dfrac{1}{\pi\sqrt{3}}-\dfrac{1}{6}

Digvijay Singh - 10 months, 1 week ago

Log in to reply

Fixed. Since I have now shown you how to do it, maybe you could do the second one yourself.

Mark Hennings - 10 months, 1 week ago

Log in to reply

Thank you, although I doubt that I'll be able to do the second part. I'm a first year college student, and I have a very little knowledge about elliptic functions. We learn very basic real analysis and linear algebra here, in the first year.

Digvijay Singh - 10 months, 1 week ago

I found the sums in the following paper:

MODULAR TRANSFORMATIONS AND GENERALIZATIONS OF SEVERAL FORMULAE OF RAMANUJAN

Digvijay Singh - 10 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...