Tricky Triangle

Geometry Level 4

X X , Y Y and Z Z are 3 mutually parallel straight lines in a plane, such that Y Y is between X X and Z Z and the distance between X X and Y Y is 10 10 units and the distance between Y Y and Z Z is 6 6 units. A B C ABC is an equilateral triangle with A A on X X , B B on Y Y and C C on Z Z . If the area of A B C \triangle ABC can be expressed as a 2 b \dfrac{a^2}{\sqrt{b}} where a a and b b are coprime positive integers and b b is not divisible by the square of any prime, find the value of a + b a+b .


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Draw a line perpendicular from B B to line X X and to line Z Z , name the intersection points D D and E E ; and draw a line perpendicular from C C to line X X , name the intersection point F F . Clearly a rectangle is formed. Name L L the side lenght of the triangle, a = D A a=\overline{DA} and b = A F b=\overline{AF} . The dimentions of the rectangle are: height of 16 16 and base x + y x+y . Apply Pythagorean Theorem to triangles B D A \triangle BDA , B E C \triangle BEC and A F C \triangle AFC : 1 0 2 + x 2 = L 2 10^2+x^2=L^2 6 2 + ( x + y ) 2 = L 2 6^2+(x+y)^2=L^2 y 2 + 1 6 2 = L 2 y^2+16^2=L^2 Solve for x x and y y from first and third equations and substitute in the second one: x = L 2 100 x=\sqrt{L^2-100} y = L 2 256 y=\sqrt{L^2-256} 36 + ( L 2 100 + L 2 256 ) 2 = L 2 36+(\sqrt{L^2-100}+\sqrt{L^2-256})^2=L^2 36 + L 2 100 + 2 ( L 2 100 ) ( L 2 256 ) + L 2 256 = L 2 36+L^2-100+2\sqrt{(L^2-100)(L^2-256)}+L^2-256=L^2 2 L 4 356 L 2 + 25600 = 320 L 2 2\sqrt{L^4-356L^2+25600}=320-L^2 4 ( L 4 356 L 2 + 25600 ) = ( 320 L 2 ) 2 4(L^4-356L^2+25600)=(320-L^2)^2 4 L 4 1424 L 2 + 102400 = 102400 640 L 2 + L 4 4L^4-1424L^2+102400=102400-640L^2+L^4 3 L 4 784 L 2 = 0 3L^4-784L^2=0 3 L 2 = 784 3L^2=784 L 2 = 784 3 L^2=\dfrac{784}{3} Finally, the area of an equilateral triangle of side L L is A = L 2 3 4 A=L^2 \dfrac{\sqrt{3}}{4} : A = 784 3 × 3 4 A=\dfrac{784}{3} \times \dfrac{\sqrt{3}}{4} A = 196 3 = 1 4 2 3 A=\dfrac{196}{\sqrt{3}}=\dfrac{14^2}{\sqrt{3}} Hence, a = 14 a=14 , b = 3 b=3 and a + b = 17 a+b=\boxed{17} .

NICE... ONLY ONE THAT I CAN UNDERSTAND (IT DOESN'T HAS SINE AND COSINE!)

L Chua - 1 year ago
Hs N
Jun 12, 2014

First we draw the line parallel to X Z XZ through B B and the perpendiculars from A A and C C to this line. The first one intersects the line at P P , the second at O O . If we call the length of each side of the triangle l l and the angle B O C = α \angle BOC=\alpha , we have B A P = 60 α \angle BAP = 60-\alpha and get the following equations:

{ l sin ( α ) = O B = 6 , l sin ( 60 α ) = B P = 10. \left\{\begin{array}{l}l\sin(\alpha)=OB=6,\\l\sin(60-\alpha)=BP=10.\end{array}\right.

We now manipulate the second equation, using the angle sum formula for sines: l sin ( 60 α ) = l ( sin ( 60 ) cos ( α ) cos ( 60 ) sin ( α ) ) = l ( 3 2 cos ( α ) 1 2 sin ( α ) . l\sin(60-\alpha) = l(\sin(60)\cos(\alpha)-\cos(60)\sin(\alpha))=l(\frac{\sqrt{3}}{2}\cos(\alpha)-\frac{1}{2}\sin(\alpha). Since we know l sin α l\sin\alpha , we can fill this in to obtain l cos α = 26 3 l\cos\alpha=\frac{26}{\sqrt{3}} . We thus have l 2 = l 2 ( sin 2 α + cos 2 α ) = = 784 3 l^2=l^2(\sin^2\alpha+\cos^2\alpha)=\ldots=\frac{784}{3} . Since the area of an equilateral triangle given a side l l equals 3 4 l 2 \frac{\sqrt{3}}{4}l^2 , it follows that A = 3 4 784 3 = 1 4 2 3 A=\frac{\sqrt{3}}{4}\cdot\frac{784}{3}=\frac{14^2}{\sqrt{3}} and thus the answer is 14 + 3 = 17 14+3=17 .

Nice exactly how i did it.

Bruno Tenorio - 6 years, 11 months ago
Nam Diện Lĩnh
Jun 12, 2014

Let B B be the origin of the complex plane then C is the complex number t 6 i t-6i . We rotate C C round B B and get A A , that is

A = C ( 1 2 + 3 2 i ) = ( t 6 i ) ( 1 2 + 3 2 i ) = ( t 2 + 6 3 ) + ( t 3 2 3 ) i A=C(\frac{1}{2}+\frac{\sqrt{3}}{2}i)=(t-6i)(\frac{1}{2}+\frac{\sqrt{3}}{2}i)=(\frac{t}{2}+6\sqrt{3})+(\frac{t\sqrt{3}}{2}-3)i

Because the y y coordinate of A A is 10, that means t 3 2 3 = 10 \frac{t\sqrt{3}}{2}-3=10 , then t = 26 3 3 t=\frac{26\sqrt{3}}{3}

The area of the A B C ABC is B C 2 3 4 \frac{BC^2\sqrt{3}}{4} , so we have

S A B C = ( t 2 + 36 ) 3 4 = ( ( 26 3 3 ) 2 + 36 ) 3 4 = 1 3 2 + 27 3 = 1 4 2 3 S_{ABC}=\frac{(t^2+36)\sqrt{3}}{4}=((\frac{26\sqrt{3}}{3})^2+36)\frac{\sqrt{3}}{4}=\frac{13^2+27}{\sqrt{3}}=\frac{14^2}{\sqrt{3}}

This is how I did it.

I'm not exactly sure why the problem creator decided to put a 2 b \dfrac{a^2}{\sqrt{b}} instead of just a b \dfrac{a}{\sqrt{b}} or even a b c \dfrac{a\sqrt{b}}{c} .

Daniel Liu - 6 years, 12 months ago

Log in to reply

May be he does not like square number :D

Nam Diện Lĩnh - 6 years, 12 months ago
Unstable Chickoy
Jun 9, 2014

Let s s be the sides of the triangle. Make a vertical line passing through vertex B B .

From vertex B B , let

θ \theta be the angle between the upper vertical line X Y \overline{XY} to the side B A \overline{BA} .

α \alpha be the angle between the lower vertical line Y Z \overline{YZ} to the side B C \overline{BC} .

θ + 60 + α = 180 ; θ + α = 120 \theta + 60 + \alpha = 180 ; \theta + \alpha = 120

cos θ = 10 s \cos{\theta} = \frac{10}{s}

s = 10 cos θ s = \frac{10}{\cos{\theta}}

cos α = 6 s \cos{\alpha} = \frac{6}{s}

s = 6 cos α s = \frac{6}{\cos{\alpha}}

cos θ 10 = cos α 6 \frac{\cos{\theta}}{10} = \frac{\cos{\alpha}}{6}

cos ( 120 α ) 10 = cos α 6 \frac{\cos{(120 - \alpha)}}{10} = \frac{\cos{\alpha}}{6}

cos 120 c o s α + sin 120 sin α = 5 cos α 3 \cos120cos\alpha + \sin120\sin\alpha = \frac{5\cos\alpha}{3}

Simplifying can arrive

tan α = 26 6 3 \tan\alpha = \frac{26}{6\sqrt{3}}

tan α = 26 6 3 = 26 / 3 6 = Z A Y Z \tan\alpha = \frac{26}{6\sqrt{3}} = \frac{26/\sqrt{3}}{6} = \frac{\overline{ZA}}{\overline{YZ}}

s = ( Z A ) 2 + ( Y Z ) 2 s = \sqrt{(\overline{ZA})^2 + (\overline{YZ})^2}

s = ( 26 / 3 ) 2 + ( 6 ) 2 s = \sqrt{(26/\sqrt{3})^2 + (6)^2}

s = 28 3 3 s = \frac{28\sqrt{3}}{3}

Solving for the area of the triangle A A

A = 1 2 s 2 sin 60 A = \frac{1}{2}s^2\sin60

Substituting values:

A = 392 3 . 3 2 = 1 4 2 3 A = \frac{392}{3}.\frac{\sqrt3}{2} = \frac{14^2}{\sqrt3}

a + b = 14 + 3 = 17 a + b = 14 + 3 = \boxed{17}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...