Tricky trigonometric integral

Calculus Level 4

Let f ( x ) = 3 0 x cos ( t ) + cos ( 2 t ) cos ( t 2 ) d t . f(x)=3\int_0^x \frac{\cos(t)+\cos(2t)}{\cos(\frac{t}{2})}dt. Compute f ( π ) f(\pi) .


The answer is -4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jeffrey Robles
Mar 6, 2018

Using the sum-to-product identity for cosine ,

cos ( t ) + cos ( 2 t ) = 2 cos ( 3 t 2 ) cos ( t 2 ) \cos(t) + \cos(2t) = 2\cos(\frac{3t}{2})\cos(\frac{t}{2})

Thus,

f ( x ) = 3 0 x cos ( t ) + cos ( 2 t ) cos ( t 2 ) d t = 6 0 x cos ( 3 t 2 ) d t = 4 sin ( 3 x 2 ) f(x) = 3\int_0^{x}\frac{\cos(t) + \cos(2t)}{\cos(\frac{t}{2})} dt = 6\int_0^{x} \cos(\frac{3t}{2}) dt = 4\sin(\frac{3x}{2}) f ( π ) = 4 f(\pi) = -4

Mark Hennings
Mar 5, 2018

Note that cos 2 t + cos t = 2 cos 2 t + cos t 1 = ( cos t + 1 ) ( 2 cos t 1 ) = 2 cos 2 1 2 t ( 2 cos t 1 ) \cos2t + \cos t \; = \; 2\cos^2t + \cos t - 1 \; = \; (\cos t + 1)(2\cos t - 1) \; = \;2\cos^2\tfrac12t(2\cos t - 1) so that g ( t ) = cos 2 t + cos t cos 1 2 t = 4 cos 1 2 t cos t 2 cos 1 2 t = 2 ( cos 3 2 t + cos 1 2 ) 2 cos 1 2 t = 2 cos 3 2 t g(t) \; =\; \frac{\cos2t + \cos t}{\cos\frac12t} \; = \; 4\cos\tfrac12t \cos t - 2\cos\tfrac12t \; = \; 2(\cos\tfrac32t + \cos\tfrac12) - 2\cos\tfrac12t \; =\; 2\cos\tfrac32t and hence f ( x ) = 3 0 x g ( t ) d t = 4 sin 3 2 x f(x) \; = \;3 \int_0^x g(t)\,dt \; = \; 4\sin\tfrac32x Thus f ( π ) = 4 f(\pi) = \boxed{-4} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...