Tricky Trigonometric Summation

Calculus Level 5

The sum n = 0 cos ( n θ ) 2 n \sum_{n=0}^{\infty} \frac{\cos{(n \theta)}}{2^{n}} where cos θ = 1 5 \cos{\theta} = \frac{1}{5} , can be expressed in the form α β \frac{\alpha}{\beta} where α \alpha and β \beta are coprime positive integers. Find α + β \alpha + \beta .

Credit to MA Θ \Theta 1991


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 23, 2018

S = n = 0 cos ( n θ ) 2 n Since cos x = e x i + e x i 2 = n = 0 e n θ i + e n θ i 2 n + 1 = 1 2 ( n = 0 e n θ i 2 n + n = 0 e n θ i 2 n ) = 1 2 ( 1 1 e θ i 2 + 1 1 e θ i 2 ) = 1 2 e θ i + 1 2 e θ i = 2 e θ i + 2 e θ i ( 2 e θ i ) ( 2 e θ i ) = 4 ( e θ i + e θ i ) 5 2 ( e θ i + e θ i ) Since cos x = e x i + e x i 2 = 4 2 cos θ 5 4 cos θ Note that cos θ = 1 5 = 18 21 = 6 7 \begin{aligned} S & = \sum_{n=0}^\infty \frac {\cos (n \theta)}{2^n} & \small \color{#3D99F6} \text{Since }\cos x = \frac {e^{xi}+e^{-xi}}2 \\ & = \sum_{n=0}^\infty \frac {e^{n \theta i}+e^{-n \theta i}}{2^{n+1}} \\ & = \frac 12 \left(\sum_{n=0}^\infty \frac {e^{n \theta i}}{2^n} + \sum_{n=0}^\infty \frac {e^{- n \theta i}}{2^n} \right) \\ & = \frac 12 \left(\frac 1{1-\frac {e^{\theta i}}2} + \frac 1{1-\frac {e^{-\theta i}}2} \right) \\ & = \frac 1{2-e^{\theta i}} + \frac 1{2-e^{-\theta i}} \\ & = \frac {2-e^{\theta i} + 2-e^{-\theta i}}{(2-e^{\theta i})(2-e^{-\theta i})} \\ & = \frac {4-(e^{\theta i} + e^{-\theta i})}{5-2(e^{\theta i}+e^{-\theta i})} & \small \color{#3D99F6} \text{Since }\cos x = \frac {e^{xi}+e^{-xi}}2 \\ & = \frac {4-2\cos \theta}{5-4\cos \theta} & \small \color{#3D99F6} \text{Note that }\cos \theta = \frac 15 \\ & = \frac {18}{21} = \frac 67 \end{aligned}

Therefore, α + β = 6 + 7 = 13 \alpha + \beta = 6+7 = \boxed{13} .

Note that cos ( n θ ) \cos{(n\theta)} is the real part of cos ( n θ ) + i sin ( n θ ) = e i n θ \cos{(n\theta)} + i\sin{(n\theta)} = e^{in\theta} . Therefore, the sum can be rewritten as n = 0 cos ( n θ ) 2 n = Re ( n = 0 e i n θ 2 n ) \large{\sum_{n=0}^{\infty} \frac{\cos{(n\theta)}}{2^{n}} = \operatorname{Re} \bigg(\sum_{n=0}^{\infty} \frac{e^{in\theta}}{2^n}\bigg)} Rearranging exponents = Re ( n = 0 ( e i θ 2 ) n ) = \large{\operatorname{Re} \bigg(\sum_{n=0}^{\infty} \bigg( \frac{e^{i\theta}}{2} \bigg)^{n}\bigg)} Notice the resemblance this previous sum has to a geometric series. With first term 1 1 and common ratio e i θ 2 \Large{\frac{e^{i\theta}}{2}} , we can evoke the formula for an infinite geometric series. namely a 1 r \Large{\frac{a}{1-r}} . Thus, = Re ( 1 1 e i θ 2 ) = \large{\operatorname{Re} \bigg(\frac{1}{1-\frac{e^{i\theta}}{2}} \bigg)} Changing our expression from exponential from to trigonometric form = Re ( 1 1 1 2 cos θ i 2 sin θ ) = \large{\operatorname{Re} \bigg(\frac{1}{1- \frac{1}{2}\cos\theta - \frac{i}{2} \sin\theta} \bigg)} To find the real part of this expression, we need to rationalize the denominator which involves multiplying by the top and bottom by 1 1 2 cos θ + i 2 sin θ \large{1- \frac{1}{2}\cos\theta + \frac{i}{2} \sin\theta} which leads to = Re ( 1 1 2 cos θ + i 2 sin θ ( 1 1 2 cos θ ) 2 + 1 4 sin 2 θ ) = \large{\operatorname{Re} \Bigg(\frac{1- \frac{1}{2}\cos\theta + \frac{i}{2} \sin\theta}{(1-\frac{1}{2}\cos\theta)^{2} + \frac{1}{4}\sin^{2}\theta} \Bigg)} = 1 1 2 cos θ ( 1 1 2 cos θ ) 2 + 1 4 sin 2 θ = \large{ \frac{1- \frac{1}{2}\cos\theta}{(1-\frac{1}{2}\cos\theta)^{2} + \frac{1}{4}\sin^{2}\theta}} Now, since cos θ = 1 5 \cos\theta = \large{\frac{1}{5}} , then cos 2 θ = 1 25 \cos^{2} \theta = \large{\frac{1}{25}} . This also means 1 sin 2 θ = 1 25 sin 2 θ = 24 25 1- \sin^{2}\theta = \large{\frac{1}{25}} \Leftrightarrow \sin^{2}\theta = \large{\frac{24}{25}} . Plugging all of this into our expression, we get = 1 1 10 ( 9 10 ) 2 + ( 1 4 ) ( 24 25 ) = 6 7 = \large{ \frac{1- \frac{1}{10}}{(\frac{9}{10})^{2} + (\frac{1}{4})(\frac{24}{25})}} = \frac{6}{7} Thus, our α \alpha and β \beta are 6 6 and 7 7 , so our answer is α + β = 13 \alpha + \beta = \boxed{13}

\underline{\hspace{ 11 in}}

Much credit and inspiration is due to the authors of the Art of Problem Solving Volume 2: and Beyond , Richard Rusczyk and Sandor Lehoczky, for providing a basis for the solution to this problem!

I did the same way. Even though I credit my maths teacher for the basis of solution.

Mayank Jha - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...