Tricky Trigonometry - 1

Geometry Level 4

If f ( θ ) = 1 sin 2 θ + cos 2 θ 2 cos 2 θ f(\theta) = \dfrac{1 - \sin 2\theta + \cos 2\theta}{2 \cos 2\theta} , then find the value of f ( 1 1 ) f ( 3 4 ) f(11^\circ) f(34^\circ) .


Also try Tricky Trigonometry-2 and Tricky Trigonometry-3


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 15, 2019

f ( θ ) = 1 sin 2 θ + cos 2 θ 2 cos 2 θ Let t = tan θ and using half- = 1 2 t 1 + t 2 + 1 t 2 1 + t 2 2 × 1 t 2 1 + t 2 angle tangent substitution. = 1 1 + t = 1 1 + tan θ \begin{aligned} f(\theta) & = \frac {1-\sin 2\theta + \cos 2\theta}{2\cos 2 \theta} & \small \blue{\text{Let }t = \tan \theta \text{ and using half-}} \\ & = \frac {1-\frac {2t}{1+t^2}+\frac {1-t^2}{1+t^2}}{2\times \frac {1-t^2}{1+t^2}} & \small \blue{\text{angle tangent substitution.}} \\ & = \frac 1{1+t} = \frac 1{1+\tan \theta} \end{aligned}

Then

f ( 1 1 ) f ( 3 4 ) = 1 ( 1 + tan 1 1 ) ( 1 + tan 3 4 ) = 1 ( 1 + tan 1 1 ) ( 1 + tan ( 4 5 1 1 ) ) = 1 ( 1 + tan 1 1 ) ( 1 + 1 tan 1 1 1 + tan 1 1 ) = 1 2 = 0.5 \begin{aligned} f(11^\circ) f(34^\circ) & = \frac 1{(1+\tan 11^\circ)(1+\tan 34^\circ)} \\ & = \frac 1{(1+\tan 11^\circ)(1+\tan (45^\circ - 11^\circ))} \\ & = \frac 1{(1+\tan 11^\circ)\left(1+\frac {1-\tan 11^\circ}{1+\tan 11^\circ}\right)} \\ & = \frac 12 = \boxed{0.5} \end{aligned}


Reference: Half-angle tangent substitution

The given function can be simplified to f ( θ ) = f(\theta)= 1 1 + t a n θ \dfrac{1}{1+tan \theta} . So f ( θ ) × f ( π 4 θ ) = 0.5 f(\theta)\times f(\dfrac{π}{4}-\theta) =0.5 for all values of θ \theta . Hence the required answer is 0.5 0.5

@Alak Bhattacharya , you should put a backslash "\" in front of all function name such as \tan \theta tan θ \tan \theta . Note that the tan is not italic and that there is a space between tan and theta.

Chew-Seong Cheong - 1 year, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...