Tricky Trigonometry

Geometry Level 1

A B C ABC is a triangle with cos ( C 2 ) = 1 3 \cos \left(\frac{\angle C}{2}\right) = \frac{1}{3} . What is the value of tan 2 ( A + B π 2 ) \tan^2 \left(\frac{\angle A + \angle B - \pi}{2}\right) ?

16 4 8 12

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Arron Kau Staff
May 13, 2014

Since the sum of the angles in a triangle is π \pi , thus A + B π 2 = C 2 \frac{\angle A + \angle B - \pi}{2} = -\frac{\angle C}{2} . Since tan \tan is an odd function, thus tan 2 ( A + B π 2 ) = tan 2 ( C 2 ) = tan 2 ( C 2 ) \tan^2 \left(\frac{\angle A + \angle B - \pi}{2}\right) = \tan^2 \left(-\frac{\angle C}{2}\right) = \tan^2 \left(\frac{\angle C}{2}\right) . Using trigonometric identities, we have

tan 2 ( C 2 ) = sin 2 ( C 2 ) cos 2 ( C 2 ) = 1 cos 2 ( C 2 ) cos 2 ( C 2 ) = 1 1 2 3 2 1 2 3 2 = 3 2 1 2 1 2 = 8 \begin{aligned} \tan^2 \left(\frac{\angle C}{2}\right) &= \frac{\sin^2 \left(\frac{\angle C}{2}\right)}{\cos^2 \left(\frac{\angle C}{2}\right)} \\ &= \frac{1 - \cos^2 \left(\frac{\angle C}{2}\right)}{\cos^2 \left(\frac{\angle C}{2}\right)} \\ &= \frac{1 - \frac{1^2}{3^2}}{\frac{1^2}{3^2}} \\ &= \frac{3^2-1^2}{1^2} \\ &= 8 \\ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...