If sin 2 θ = x and r = 1 ∏ 4 sin ( r θ ) = a x 2 + b x 3 + c x 4 + d x 5 , then find the value of a + b + c + d .
Note: r = 1 ∏ n r = 1 ⋅ 2 ⋅ 3 . . . . n
Also try Tricky Trigonometry-1 and Tricky Trigonometry-2
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let θ = 2 π . Then sin θ sin 2 θ sin 3 θ sin 4 θ = 0 . Also, x = 1 , so a x 2 + b x 3 + c x 4 + d x 5 = a + b + c + d . Therefore, a + b + c + d = 0 .
A good and faster method for objective type questions.
From the given data of the problem we get sin θ × sin 2 θ × sin 3 θ × sin 4 θ = 2 4 x 2 − 1 0 4 x 3 + 1 4 4 x 4 − 6 4 x 5 . So a = 2 4 , b = − 1 0 4 , c = 1 4 4 , d = − 6 4 and a + b + c + d = 0
Problem Loading...
Note Loading...
Set Loading...
r = 1 ∏ 4 sin ( r θ ) = sin θ sin 2 θ sin 3 θ sin 4 θ = sin θ ( 2 sin θ cos θ ) ( 3 sin θ − 4 sin 3 θ ) ( 2 ( 2 sin θ cos θ ) ( 1 − 2 sin 2 θ ) ) = 8 sin 2 θ cos 2 θ ( 3 sin 2 θ − 4 sin 4 θ ) ( 1 − 2 sin 2 θ ) = 8 x ( 1 − x ) ( 3 x − 4 x 2 ) ( 1 − 2 x ) = 2 4 x 2 − 1 0 4 x 3 + 1 4 4 x 4 − 6 4 x 5 Given that sin 2 θ = x ⟹ cos 2 θ = 1 − x
Therefore, a + b + c + d = 2 4 − 1 0 4 + 1 4 4 − 6 4 = 0 .