Tricky Trigonometry - 3

Geometry Level 4

If sin 2 θ = x \sin^2\theta = x and r = 1 4 sin ( r θ ) = a x 2 + b x 3 + c x 4 + d x 5 \displaystyle \prod^{4}_{r = 1} \sin(r\theta) = ax^2 + bx^3 + cx^4 + dx^5 , then find the value of a + b + c + d a + b + c + d .

Note: r = 1 n r = 1 2 3 . . . . n \displaystyle \prod^{n}_{r = 1} r = 1 \cdot 2 \cdot 3 \quad .... \quad n


Also try Tricky Trigonometry-1 and Tricky Trigonometry-2


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

r = 1 4 sin ( r θ ) = sin θ sin 2 θ sin 3 θ sin 4 θ = sin θ ( 2 sin θ cos θ ) ( 3 sin θ 4 sin 3 θ ) ( 2 ( 2 sin θ cos θ ) ( 1 2 sin 2 θ ) ) = 8 sin 2 θ cos 2 θ ( 3 sin 2 θ 4 sin 4 θ ) ( 1 2 sin 2 θ ) Given that sin 2 θ = x = 8 x ( 1 x ) ( 3 x 4 x 2 ) ( 1 2 x ) cos 2 θ = 1 x = 24 x 2 104 x 3 + 144 x 4 64 x 5 \begin{aligned} \prod_{r=1}^4 \sin (r\theta) & = \sin \theta \sin 2\theta \sin 3\theta \sin 4 \theta \\ & = \sin \theta (2\sin \theta \cos \theta) (3\sin \theta - 4\sin^3 \theta )\left(2(2\sin \theta \cos \theta)(1-2\sin^2\theta)\right) \\ & = 8 \sin^2 \theta \cos^2 \theta (3\sin^2 \theta - 4\sin^4 \theta )(1-2\sin^2\theta) & \small \blue{\text{Given that }\sin^2 \theta = x} \\ & = 8 x(1-x)(3x - 4x^2)(1-2x) & \small \blue{\implies \cos^2 \theta = 1-x} \\ & = 24x^2 -104x^3 + 144x^4-64x^5 \end{aligned}

Therefore, a + b + c + d = 24 104 + 144 64 = 0 a+b+c+d=24-104+144-64 = \boxed 0 .

Jon Haussmann
Oct 10, 2019

Let θ = π 2 \theta = \frac{\pi}{2} . Then sin θ sin 2 θ sin 3 θ sin 4 θ = 0. \sin \theta \sin 2 \theta \sin 3 \theta \sin 4 \theta = 0. Also, x = 1 x = 1 , so a x 2 + b x 3 + c x 4 + d x 5 = a + b + c + d ax^2 + bx^3 + cx^4 + dx^5 = a + b + c + d . Therefore, a + b + c + d = 0 a + b + c + d = 0 .

A good and faster method for objective type questions.

Ram Mohith - 1 year, 8 months ago

From the given data of the problem we get sin θ × sin 2 θ × sin 3 θ × sin 4 θ = 24 x 2 104 x 3 + 144 x 4 64 x 5 \sin \theta \times\sin 2\theta \times\sin 3\theta \times\sin 4\theta =24x^2-104x^3+144x^4-64x^5 . So a = 24 , b = 104 , c = 144 , d = 64 a=24,b=-104,c=144,d=-64 and a + b + c + d = 0 a+b+c+d=\boxed{0}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...