Tricky Trigonometry

Algebra Level 4


The answer is 0.20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Using the identity

cos 3 6 + cos 10 8 = 1 2 cos 10 8 = 1 2 cos 3 6 = 1 2 1 + 5 4 = 1 5 4 \begin{aligned} \cos 36^\circ + \cos 108^\circ & = \frac{1}{2} \\ \Rightarrow \cos 108^\circ & = \frac{1}{2} - \cos 36^\circ \\ & = \frac{1}{2} - \frac{1+\sqrt{5}}{4} \\ & = \frac{1-\sqrt{5}}{4} \end{aligned}

Using the identity

cos 10 8 = 1 tan 2 5 4 1 + tan 2 5 4 1 tan 2 5 4 1 + tan 2 5 4 = 1 5 4 4 ( 1 tan 2 5 4 ) = ( 1 5 ) ( 1 + tan 2 5 4 ) tan 2 5 4 = 3 + 5 5 5 \begin{aligned} \cos 108^\circ & = \frac{1-\tan^2 54^\circ}{1+ \tan^2 54^\circ} \\ \Rightarrow \frac{1-\tan^2 54^\circ}{1+ \tan^2 54^\circ} & = \frac{1-\sqrt{5}}{4} \\ 4(1-\tan^2 54^\circ)& = (1-\sqrt{5})(1+ \tan^2 54^\circ ) \\ \Rightarrow \tan^2 54^\circ & = \frac {3+\sqrt{5}}{5-\sqrt{5}} \end{aligned}

Similarly, we get: tan 2 1 8 = 3 5 5 + 5 \tan^2 18^\circ = \dfrac {3-\sqrt{5}}{5+\sqrt{5}}

Therefore,

tan 2 1 8 tan 2 5 4 = ( 3 5 5 + 5 ) ( 3 + 5 5 5 ) = 9 5 25 5 = 4 20 = 1 5 = 0.2 \begin{aligned} \tan^2 18^\circ \tan^2 54^\circ& = \left(\dfrac {3-\sqrt{5}}{5+\sqrt{5}}\right) \left(\dfrac {3+\sqrt{5}}{5-\sqrt{5}} \right) \\ & = \frac{9-5}{25-5} = \frac{4}{20} = \frac{1}{5} = \boxed{0.2} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...