Trig 1

Geometry Level pending

If π 4 < θ < 0 -\frac{\pi}{4} < \theta < 0 and cos 2 θ 1 + sin 2 θ = 3 2 , \frac{\cos 2\theta}{1+\sin 2\theta}=\frac{3}{2}, what is the value of tan θ ? \tan \theta?

1 3 -\frac{1}{3} 1 5 -\frac{1}{5} 1 2 -\frac{1}{2} 2 5 -\frac{2}{5}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Nov 15, 2020

Let us take cos 2 θ 1 + sin 2 θ 1 sin 2 θ 1 sin 2 θ = cos 2 θ ( 1 sin 2 θ ) 1 sin 2 2 θ = cos 2 θ ( 1 sin 2 θ ) cos 2 2 θ = sec 2 θ tan 2 θ = tan 2 2 θ + 1 tan 2 θ = 3 2 . \frac{\cos2\theta}{1+\sin2\theta} \cdot \frac{1-\sin2\theta}{1-\sin2\theta} = \frac{\cos2\theta(1-\sin2\theta)}{1-\sin^{2}2\theta} = \frac{\cos2\theta(1-\sin2\theta)}{\cos^{2}2\theta} = \sec2\theta - \tan2\theta = \sqrt{\tan^{2}2\theta + 1} - \tan2\theta = \frac{3}{2}. Let x = tan 2 θ x = \tan2\theta to give us:

x 2 + 1 = x + 3 2 x 2 + 1 = x 2 + 3 x + 9 4 5 4 = 3 x 5 12 = tan 2 θ . \sqrt{x^2+1} = x + \frac{3}{2} \Rightarrow x^2 + 1 = x^2 + 3x + \frac{9}{4} \Rightarrow -\frac{5}{4} = 3x \Rightarrow -\frac{5}{12} = \tan2\theta.

or 2 tan θ 1 tan 2 θ = 5 12 ; \frac{2\tan \theta}{1-\tan^{2}\theta} = -\frac{5}{12};

or 24 tan θ = 5 tan 2 θ 5 ; 24\tan \theta = 5\tan^{2}\theta - 5;

or 0 = 5 tan 2 θ 24 tan θ 5 ; 0 = 5\tan^{2}\theta - 24\tan \theta - 5;

or 0 = ( 5 tan θ + 1 ) ( tan θ 5 ) 0 = (5\tan \theta + 1)(\tan \theta - 5) ;

or tan θ = 1 5 , 5 \tan \theta = -\frac{1}{5}, 5 . Since θ ( π 4 , 0 ) tan θ < 0 \theta \in (-\frac{\pi}{4},0) \Rightarrow \tan \theta < 0 . Thus, tan θ = 1 5 \boxed{\tan \theta = -\frac{1}{5}} is the only admissible answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...