Trig

Algebra Level 4

( tan 3 π 11 + 4 sin 2 π 11 ) 2 = \left(\tan\frac{3\pi}{11}+4\sin\frac{2\pi}{11}\right)^2=


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pi Han Goh
Apr 30, 2014

Recall the trigonometric identities cos ( A ) = cos ( π A ) 1 2 sin 2 ( A ) = 2 cos 2 ( A ) 1 = cos ( 2 A ) 2 cos ( A ) sin ( B ) = sin ( A + B ) sin ( A B ) 2 sin ( A ) sin ( B ) = cos ( A + B ) + cos ( A B ) \begin{aligned} \cos(A) & = & -\cos(\pi - A) \\ 1 - 2\sin^2 (A) = 2 \cos^2 (A) - 1 & = & \cos(2A) \\ 2 \cos(A) \sin(B) & = & \sin \left ( {A+B} \right ) - \sin \left ( {A-B} \right ) \\ 2 \sin(A) \sin(B) & = & -\cos \left ( {A+B} \right ) + \cos \left ( {A-B} \right ) \\ \end{aligned}

For simplicities sake, let x = π 11 x = \frac {\pi}{11} .

Lemma cos ( 2 x ) + cos ( 4 x ) + cos ( 6 x ) + cos ( 8 x ) + cos ( 10 x ) = 1 2 \cos(2x) + \cos(4x) + \cos(6x) + \cos(8x) + \cos(10x) = -\frac {1}{2}

Proof of Lemma

By recurrence relation of Tchebyshev polynomial, T n + 1 ( y ) = 2 y T n ( y ) T n 1 ( y ) T_{n+1} (y) = 2y \space T_n (y) - T_{n-1} (y)

So T 1 ( y ) = y , T 2 ( y ) = 2 y 2 1 , T 3 ( y ) = 4 y 3 3 y , T 4 ( y ) = 8 y 4 8 y 2 + 1 , T 5 ( y ) = 16 y 5 20 y 4 + 5 y , T_1 (y) = y, T_2 (y) = 2y^2 - 1, T_3 (y)= 4y^3 - 3y, T_4 (y)= 8y^4 - 8y^2 + 1, T_5 (y) = 16y^5 - 20y^4 + 5y , \ldots

cos ( 11 x ) = 1 \cos(11x) = -1 , state T 11 ( y ) = 1 T_{11} (y) =-1 in terms of linear combination of T 1 ( y ) , T 3 ( y ) , T 5 ( y ) , T 7 ( y ) , T 9 ( y ) T_1 (y), T_3 (y), T_5 (y), T_7 (y), T_9 (y) , we get T 1 ( y ) + T 3 ( y ) + T 5 ( y ) + T 7 ( y ) + T 9 ( y ) = 1 2 T_1 (y) + T_3 (y) + T_5 (y)+ T_7 (y)+ T_9 (y) = \frac {1}{2} . With cos ( A ) = cos ( π A ) \cos(A) = - \cos(\pi - A) . This completes the proof.

We claim that the answer is 11 11 . Proof by contradiction. Suppose otherwise,

11 cos 2 ( 3 x ) ( sin ( 3 x ) + 4 cos ( 3 x ) sin ( 2 x ) ) 2 11 cos ( 6 x ) + 1 2 ( sin ( 3 x ) + 2 sin ( 5 x ) 2 sin ( x ) ) 2 11 ( cos ( 6 x ) + 1 ) 2 ( sin 2 ( 3 x ) + 4 sin 2 ( 5 x ) + 4 sin 2 ( x ) + 4 sin ( 5 x ) sin ( 3 x ) 4 sin ( 3 x ) sin ( x ) 8 sin ( 5 x ) sin ( x ) ) 11 cos ( 6 x ) + 11 2 ( 1 cos ( 6 x ) 2 + 2 ( 1 cos ( 10 x ) ) + 2 cos ( 2 x ) + 2 ( cos ( 8 x ) + cos ( 2 x ) ) 2 ( cos ( 4 x ) + cos ( 2 x ) ) 4 ( cos ( 6 x ) + cos ( 4 x ) ) ) 2 4 cos ( 10 x ) + 4 cos ( 8 x ) + 4 cos ( 6 x ) + 4 cos ( 4 x ) + 4 cos ( 2 x ) \begin{aligned} 11 \cos^2 (3x) & \ne & \left ( \sin(3x) + 4 \cos(3x) \sin (2x) \right )^2 \\ 11 \cdot \frac { \cos(6x) + 1}{2} & \ne & \left ( \sin(3x) + 2 \sin(5x) - 2\sin(x) \right )^2 \\ 11 ( \cos(6x) + 1) & \ne & 2 \left ( \sin^2 (3x) + 4\sin^2(5x) + 4 \sin^2 (x) + 4 \sin(5x) \sin(3x) - 4\sin(3x) \sin(x) - 8\sin(5x) \sin(x) \right) \\ 11 \cos(6x) + 11 & \ne & 2 \left ( \frac {1 - \cos(6x)}{2} + 2(1 - \cos(10x)) + 2\cos(2x) + 2(-\cos(8x) + \cos(2x) ) - 2(-\cos(4x) + \cos(2x)) - 4(-\cos(6x) + \cos(4x) ) \right) \\ -2 & \ne & 4 \cos(10x) + 4\cos(8x) + 4\cos(6x) + 4\cos(4x) + 4\cos(2x) \\ \end{aligned}

Which is a contradiction. So our assumption is wrong. Hence the answer is indeed 11 \boxed{11}

@Pi Han Goh , how did you just guess that the answer would be 11?

Avineil Jain - 7 years, 1 month ago

Log in to reply

Calculator. The purpose of this question (I believe) is to proof that it equals to 11 11 .

Pi Han Goh - 7 years, 1 month ago

Log in to reply

I think so you are right. Because it is too easy to substitute the values and calculate!

Avineil Jain - 7 years, 1 month ago

You could also arrive at it using the sum to product and product to sum formulas.

Cody Johnson - 7 years ago

3rd and 4th trigonometric identities are wrong.

The correct ones are given below:

2 c o s ( A ) s i n ( B ) = s i n ( A + B ) s i n ( A B ) 2cos(A)sin(B) = sin(A+B)-sin(A-B)

2 s i n ( A ) s i n ( B ) = c o s ( A B ) c o s ( A + B ) 2sin(A)sin(B) = cos(A-B)-cos(A+B)

Saurabh Mallik - 4 years, 10 months ago

Log in to reply

Fixed. Thank youuuu

Pi Han Goh - 4 years, 10 months ago
Finn Hulse
Apr 29, 2014

Nice, simple problem for once! I just rearranged using identities, and arrived at 11 \boxed{11} . Tag me in a cooler solution, whoever writes one. :D

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...