This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
@Pi Han Goh , how did you just guess that the answer would be 11?
Log in to reply
Calculator. The purpose of this question (I believe) is to proof that it equals to 1 1 .
Log in to reply
I think so you are right. Because it is too easy to substitute the values and calculate!
You could also arrive at it using the sum to product and product to sum formulas.
3rd and 4th trigonometric identities are wrong.
The correct ones are given below:
2 c o s ( A ) s i n ( B ) = s i n ( A + B ) − s i n ( A − B )
2 s i n ( A ) s i n ( B ) = c o s ( A − B ) − c o s ( A + B )
Nice, simple problem for once! I just rearranged using identities, and arrived at 1 1 . Tag me in a cooler solution, whoever writes one. :D
Problem Loading...
Note Loading...
Set Loading...
Recall the trigonometric identities cos ( A ) 1 − 2 sin 2 ( A ) = 2 cos 2 ( A ) − 1 2 cos ( A ) sin ( B ) 2 sin ( A ) sin ( B ) = = = = − cos ( π − A ) cos ( 2 A ) sin ( A + B ) − sin ( A − B ) − cos ( A + B ) + cos ( A − B )
For simplicities sake, let x = 1 1 π .
Lemma cos ( 2 x ) + cos ( 4 x ) + cos ( 6 x ) + cos ( 8 x ) + cos ( 1 0 x ) = − 2 1
Proof of Lemma
By recurrence relation of Tchebyshev polynomial, T n + 1 ( y ) = 2 y T n ( y ) − T n − 1 ( y )
So T 1 ( y ) = y , T 2 ( y ) = 2 y 2 − 1 , T 3 ( y ) = 4 y 3 − 3 y , T 4 ( y ) = 8 y 4 − 8 y 2 + 1 , T 5 ( y ) = 1 6 y 5 − 2 0 y 4 + 5 y , …
cos ( 1 1 x ) = − 1 , state T 1 1 ( y ) = − 1 in terms of linear combination of T 1 ( y ) , T 3 ( y ) , T 5 ( y ) , T 7 ( y ) , T 9 ( y ) , we get T 1 ( y ) + T 3 ( y ) + T 5 ( y ) + T 7 ( y ) + T 9 ( y ) = 2 1 . With cos ( A ) = − cos ( π − A ) . This completes the proof.
We claim that the answer is 1 1 . Proof by contradiction. Suppose otherwise,
1 1 cos 2 ( 3 x ) 1 1 ⋅ 2 cos ( 6 x ) + 1 1 1 ( cos ( 6 x ) + 1 ) 1 1 cos ( 6 x ) + 1 1 − 2 = = = = = ( sin ( 3 x ) + 4 cos ( 3 x ) sin ( 2 x ) ) 2 ( sin ( 3 x ) + 2 sin ( 5 x ) − 2 sin ( x ) ) 2 2 ( sin 2 ( 3 x ) + 4 sin 2 ( 5 x ) + 4 sin 2 ( x ) + 4 sin ( 5 x ) sin ( 3 x ) − 4 sin ( 3 x ) sin ( x ) − 8 sin ( 5 x ) sin ( x ) ) 2 ( 2 1 − cos ( 6 x ) + 2 ( 1 − cos ( 1 0 x ) ) + 2 cos ( 2 x ) + 2 ( − cos ( 8 x ) + cos ( 2 x ) ) − 2 ( − cos ( 4 x ) + cos ( 2 x ) ) − 4 ( − cos ( 6 x ) + cos ( 4 x ) ) ) 4 cos ( 1 0 x ) + 4 cos ( 8 x ) + 4 cos ( 6 x ) + 4 cos ( 4 x ) + 4 cos ( 2 x )
Which is a contradiction. So our assumption is wrong. Hence the answer is indeed 1 1