Trig-algebra

Algebra Level 3

tan θ + sin θ = m \tan \theta + \sin \theta = m and m 2 n 2 = 4 m n m^{2} - n^{2} = 4\sqrt{mn}

What is n?

PS: Would love to see how you solved it!

sin θ \sin \theta tan θ \tan \theta tan θ sin θ \tan \theta - \sin \theta

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Krutarth Patel
Nov 16, 2015

Let t a n θ sin θ tan \theta - \sin \theta = n m n = ( t a n θ + s i n θ ) ( t a n θ s i n θ ) = t a n 2 θ s i n 2 θ = s i n 2 θ ( s e c 2 θ 1 ) = s i n 2 θ t a n 2 θ \begin{aligned} mn & = (tan \theta + sin \theta)(tan \theta - sin \theta) \\ & = tan^{2} \theta - sin ^ {2} \theta \\ & = sin ^ {2} \theta (sec ^ {2} \theta - 1) \\ & = sin ^ {2} \theta tan ^ {2} \theta \end{aligned} . Now, ( m + n ) 2 ( m n ) 2 = ( t a n θ + s i n θ ) 2 ( t a n θ s i n θ ) 2 = 4 t a n θ s i n θ = 4 t a n 2 θ s i n 2 θ = 4 m n (m + n) ^{2} - (m - n)^{2} = (tan \theta + sin \theta)^{2} - (tan \theta - sin \theta)^{2} = 4 tan \theta sin \theta = 4\sqrt{tan ^{2} \theta sin ^{2} \theta} = 4\sqrt{mn} Hence t a n θ s i n θ \boxed{tan \theta - sin \theta} is the answer.

Can you do it without assuming the answer?

Shantanu Rahman - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...