Trig and DE....

Calculus Level pending

d y d x = 2 + 2 s i n x c o s 2 x c o s x s i n y \frac{dy}{dx} = \frac{\sqrt{2+2sinx -cos^2 x}}{cosxsiny} and the constant of integration is C = 0. If the point (x, 75 d e g r e e s \ degrees ) lies on the curve in the range 180 < x < 270 what is the value of x to 3 significant figures?

Assumptions and details:

1) x 90 + 180 k x \ne 90 + 180k For k is any integer

2) The square root is always positive

3) y 180 k y \ne 180k 4) I have finally edited the problem such that we are working in degrees


The answer is 197.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Curtis Clement
Apr 4, 2015

Using s i n 2 x + c o s 2 x = 1 \ sin^2 x +cos^2 x = 1 : 2 + 2 s i n x c o s 2 x c o s x s i n y = s i n 2 + 2 s i n x + 1 c o s x s i n y = s i n x + 1 c o s x s i n y = d y d x \frac{\sqrt{2+2sinx - cos^2 x} }{cosx siny} = \frac{\sqrt{sin^2 + 2sinx +1}}{cosx siny} = \frac{sinx +1}{cosx siny} = \frac{dy}{dx} This differential equation is separable such that: s i n y d y = t a n x + s e c x d x \int siny \ dy = \int tanx +secx \ dx Now the constant of integration is zero so we have: c o s y = L n s e c x + L n s e c x + t a n x = L n s e c 2 x + s e c x t a n x -cos y = Ln|secx| + Ln|secx +tanx| = Ln|sec^2 x +secx tanx| = L n s i n x + 1 c o s 2 x = L n s i n x + 1 1 s i n 2 x = L n 1 1 s i n x = L n 1 s i n x = Ln| \frac{sinx +1}{cos^2 x}| = Ln| \frac{sinx+1}{1-sin^2 x }| = Ln| \frac{1}{1-sinx} | = -Ln|1-sinx| c o s y = L n 1 s i n x \Rightarrow\ cosy = Ln|1-sinx| Now we substitute y = 75 degrees into cosy: e c o s 75 = 1 s i n x x = s i n 1 ( 1 e c o s 75 ) = 197 ( 3 s f ) e^{cos75} = 1-sinx \therefore\ x = sin^{-1} (1-e^{cos75}) = 197 \ (3sf)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...