Trig Determinants

Geometry Level 3

A = [ cos x sin y sin x cos y ] , B = [ sin x sin y cos x cos y ] A = { \begin{bmatrix}{\cos x } && {\sin y} \\ {\sin x} && {\cos y}\end{bmatrix} }, B = { \begin{bmatrix}{\sin x } && {-\sin y} \\ {\cos x} && {\cos y}\end{bmatrix} }

A A and B B are matrices as shown above, where x x and y y are in between 0 0^\circ and 9 0 90^\circ .

The sum of determinants, A + B |A| + |B| equals 1 3 . \frac13.

If sin ( 2 x + 2 y ) = a b , \sin(2x + 2y) = \dfrac ab, where a a and b b are coprime integers, submit your answer as a b a \cdot b .


The answer is -72.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tom Engelsman
Jan 2, 2021

Clearly, A + B = cos ( x + y ) + sin ( x + y ) . |A| + |B| = \cos(x+y) + \sin(x+y). If we let u = cos ( x + y ) u = \cos(x+y) , then we obtain:

u + 1 u 2 = 1 3 u + \sqrt{1-u^2} = \frac{1}{3} ;

or 1 u 2 = ( 1 / 3 u ) 2 ; 1-u^2 = (1/3 - u)^2;

or 1 u 2 = 1 9 2 3 u + u 2 ; 1-u^2 = \frac{1}{9} - \frac{2}{3}u + u^2;

or 0 = 8 6 u + 18 u 2 ; 0 = -8 - 6u + 18u^2;

or u = 6 ± 6 2 4 ( 18 ) ( 8 ) 2 ( 18 ) ; u = \frac{6 \pm \sqrt{6^2 - 4(18)(-8)}}{2(18)};

or u = 1 ± 17 6 = cos ( x + y ) sin ( x + y ) = 1 ( 1 ± 17 6 ) 2 = 1 17 6 u = \frac{1 \pm \sqrt{17}}{6} = \cos(x+y) \Rightarrow \sin(x+y) = \sqrt{1 - (\frac{1 \pm \sqrt{17}}{6})^2} = \frac{1 \mp \sqrt{17}}{6} ;.

Finally, sin ( 2 x + 2 y ) = sin 2 ( x + y ) = 2 sin ( x + y ) cos ( x + y ) = 2 ( 1 17 6 ) ( 1 ± 17 6 ) = 1 17 18 = 8 9 = a b , \sin(2x+2y) = \sin 2(x+y) = 2\sin(x+y)\cos(x+y) = 2(\frac{1 \mp \sqrt{17}}{6})(\frac{1 \pm \sqrt{17}}{6}) = \frac{1-17}{18} = -\frac{8}{9} = \frac{a}{b}, and a b = 72 . a \cdot b = \boxed{-72}.

Yashas Ravi
Dec 29, 2020

If |A| + |B| = 1/3, this means that cos(x)cos(y) - sin(x)sin(y) + sin(x)cos(y) + cos(x)sin(y) = 1/3. Thus, cos(x+y) + sin(x+y) = 1/3.

Squaring both sides yields cos(x+y)^2 + sin(x+y)^2 + 2sin(x+y)cos(x+y) = 1/9. By the Pythagorean Identity, cos(x+y)^2 + sin(x+y)^2 = 1. Also, 2sin(x+y)cos(x+y) = sin(2 * (x+y)) = sin(2x+2y). Thus, sin(2x+2y) = -8/9, so -8 * 9 = -72 which is the final answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...