Trig-e

Calculus Level 3

cos ( 2 x ) sin ( 5 x ) d x = ? \large \int\cos(2x) \sin(5x) \, dx= \, ?

Assume we ignore the arbitrary constant of integration .

1 2 sin ( 3 x ) + 1 2 sin ( 7 x ) \frac{1}{2} \, \sin(3x) + \frac{1}{2} \, \sin(7x) 1 10 ( sin ( 2 x ) cos ( 5 x ) cos ( 2 x ) sin ( 5 x ) ) \frac{1}{10} ( \sin(2x) \, \cos(5x) - \cos(2x) \, \sin(5x) ) 1 6 cos ( 3 x ) 1 14 cos ( 7 x ) -\frac{1}{6} \, \cos(3x) - \frac{1}{14} \, \cos(7x) 1 2 sin ( 2 x ) 1 5 sin ( 5 x ) -\frac{1}{2} \, \sin(2x) - \frac{1}{5} \, \sin(5x)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Brandon Stocks
Jul 1, 2016

c o s ( θ ) = e i θ + e i θ 2 a n d s i n ( θ ) = e i θ e i θ 2 i \large cos(\theta) = \frac{ e^{i\theta} + e^{-i\theta} }{2} \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; and \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; sin(\theta) = \frac{ e^{i\theta} - e^{-i\theta} }{2i}

c o s ( 2 x ) s i n ( 5 x ) = ( e i 2 x + e i 2 x ) ( e i 5 x e i 5 x ) 4 i cos(2x) \, sin(5x) = \frac{ (e^{i2x} + e^{-i2x})(e^{i5x} - e^{-i5x}) }{4i}

Recall that i = 1 / i -i = 1/i

c o s ( 2 x ) s i n ( 5 x ) = i 4 ( e i 2 x + e i 2 x ) ( e i 5 x e i 5 x ) = i 4 ( e i 3 x e i 7 x + e i 7 x e i 3 x ) cos(2x) \, sin(5x) = \frac{i}{4} \, (e^{i2x} + e^{-i2x})(e^{-i5x} - e^{i5x}) = \frac{i}{4} \, (e^{-i3x} - e^{i7x} + e^{-i7x} - e^{i3x} )

Applying Euler's Formula

e i 3 x e i 3 x = c o s ( 3 x ) + i s i n ( 3 x ) ( c o s ( 3 x ) + i s i n ( 3 x ) ) = 2 i s i n ( 3 x ) e^{-i3x} - e^{i3x} = cos(-3x) + i \, sin(-3x) - \Big( cos(3x) + i \, sin(3x) \Big) = -2i \, sin(3x)

Likewise e i 7 x e i 7 x = 2 i s i n ( 7 x ) \; \; \; e^{-i7x} - e^{i7x} = -2i \, sin(7x)

c o s ( 2 x ) s i n ( 5 x ) = i 4 ( 2 i s i n ( 3 x ) 2 i s i n ( 7 x ) ) = 1 2 ( s i n ( 3 x ) + s i n ( 7 x ) ) cos(2x) \, sin(5x) = \frac{i}{4} \, \Big( -2i \, sin(3x) - 2i \, sin(7x) \Big) = \frac{1}{2} \, \Big( sin(3x) + sin(7x) \Big)

.

u =3x, du = 3 dx

s i n ( 3 x ) d x = 1 3 s i n ( u ) d u = 1 3 c o s ( u ) + C = 1 3 c o s ( 3 x ) \int sin(3x) \, dx = \frac{1}{3} \, \int sin(u) \, du = -\frac{1}{3} \, cos(u) + C = -\frac{1}{3} \, cos(3x)

s i n ( 7 x ) d x = 1 7 c o s ( 7 x ) \int sin(7x) \, dx = -\frac{1}{7} \, cos(7x)

.

c o s ( 2 x ) s i n ( 5 x ) d x = 1 6 c o s ( 3 x ) 1 14 c o s ( 7 x ) \int cos(2x) \, sin(5x) \, dx = -\frac{1}{6} \, cos(3x) - \frac{1}{14} \, cos(7x)

Or you can linearize the integrand by applying the Prosthaphaeresis Formulas , to get cos ( 2 x ) sin ( 5 x ) = 1 2 ( sin ( 7 x ) + sin ( 3 x ) ) \cos(2x) \sin(5x)= \dfrac12 ( \sin(7x) + \sin(3x) ) .

Pi Han Goh - 4 years, 11 months ago

Yes but this is a good way to learn about the exponential form of trig functions. Besides, I can never remember those formulas.

Brandon Stocks - 4 years, 11 months ago
Prakhar Bindal
Jul 2, 2016

Using 2sinAcosB = sin(A+B)+Sin(A-B) will yield answer in a line!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...