Trig-gono-metry-1

Geometry Level 3

In a rectangle A B C D ABCD with sides A B = 6 AB=6 and B C = 3 BC=3 , point P P is chosen on A B AB such that A P D = 2 C P B \angle APD = 2\angle CPB . Then A P = a b c AP= a-b\sqrt c , where a a , b b and c c are positive integers with c c being square-free. Find the value of a + b + c a+b+c .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 15, 2016

Let A P = x AP =x and C P B = θ \angle CPB = \theta . Therefore, A P D = 2 C P B = 2 θ \angle APD = 2 \angle CPB = 2 \theta . Then, we have:

{ tan 2 θ = 3 x tan θ = 3 6 x \begin{cases} \tan 2\theta = \dfrac 3x \\ \tan \theta = \dfrac 3{6-x} \end{cases}

tan 2 θ = 2 tan θ 1 tan 2 θ 3 x = 6 6 x 1 ( 3 6 x ) 2 = 6 ( 6 x ) ( 6 x ) 2 9 3 x = 36 6 x x 2 12 x + 27 1 x = 12 2 x x 2 12 x + 27 x 2 12 x + 27 = 12 x 2 x 2 3 x 2 24 x + 27 = 0 x 2 8 x + 9 = 0 x = 8 ± 28 2 = 4 7 4 + 7 > 6 rejected. \begin{aligned} \tan 2 \theta & = \frac {2 \tan \theta}{1-\tan^2 \theta} \\ \implies \frac 3x & = \frac {\frac 6{6-x}}{1- \left(\frac 3{6-x}\right)^2} \\ & = \frac {6(6-x)}{(6-x)^2-9} \\ \implies \frac 3x & = \frac {36-6x}{x^2-12x+27} \\ \frac 1x & = \frac {12-2x}{x^2-12x+27} \\ x^2-12x+27 & = 12x - 2x^2 \\ 3x^2 - 24x + 27 & = 0 \\ x^2 - 8x + 9 & = 0 \\ \implies x & = \frac {8 \pm \sqrt{28}}2 \\ & = 4 - \sqrt{7} & \small \color{#3D99F6}{ 4+\sqrt 7 > 6 \text{ rejected.}} \end{aligned}

a + b + c = 4 + 1 + 7 = 12 \implies a+b+c = 4+1+7 = \boxed{12}

The perfect solution as i wanted...+1

Ayush G Rai - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...