Trig integral-1

Calculus Level 3

Let f ( x ) = 1 + x 2 f(x) =\sqrt{1+x^{2}} and g ( θ ) g(\theta) = 1 + x 2 d θ \displaystyle \int \sqrt{1+x^{2}} d\theta , where θ = arcsin ( x 1 + x 2 ) \theta =\arcsin \left(\dfrac{x}{\sqrt{1+x^{2} }}\right) .

If g ( π 6 ) g ( 0 ) = ln ( A ) g \left(\frac{\pi}{6}\right)-g(0) = \ln(\sqrt{A}) , where A A is real, find A A .

Notation: ln ( ) \ln (\cdot) denotes the natural logarithm.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 19, 2019

It is given that θ = arcsin ( x 1 + x 2 ) \theta = \arcsin \left(\dfrac x{\sqrt{1+x^2}}\right) , sin θ = x 1 + x 2 \implies \sin \theta = \dfrac x{\sqrt{1+x^2}} . This means that tan θ = x \tan \theta = x as x 1 + x 2 = tan θ 1 + tan 2 θ = tan θ sec θ = sin θ \dfrac x{\sqrt{1+x^2}} = \dfrac {\tan \theta}{\sqrt{1+\tan^2 \theta}} = \dfrac {\tan \theta}{\sec \theta} = \sin \theta . Then:

g ( π 6 ) g ( 0 ) = 0 π 6 1 + x 2 d θ Since x = tan θ = 0 π 6 1 + tan 2 θ d θ and 1 + tan 2 θ = sec 2 θ = 0 π 6 sec θ d θ Multiply integrand by sec θ + tan θ sec θ + tan θ = 0 π 6 sec 2 θ + tan θ sec θ sec θ + tan θ d θ = ln ( tan θ + sec θ ) 0 π 6 = ln ( 1 3 + 2 3 ) ln ( 0 + 1 ) = ln ( 3 ) \begin{aligned} g\left(\frac \pi 6 \right) - g(0) & = \int_0^\frac \pi 6 \sqrt{1+x^2}\ d\theta & \small \color{#3D99F6} \text{Since }x = \tan \theta \\ & = \int_0^\frac \pi 6 \sqrt{1+\tan^2 \theta}\ d\theta & \small \color{#3D99F6} \text{and }1+\tan^2 \theta = \sec^2 \theta \\ & = \int_0^\frac \pi 6 \sec \theta\ d\theta & \small \color{#3D99F6} \text{Multiply integrand by }\frac {\sec \theta + \tan \theta}{\sec \theta + \tan \theta} \\ & = \int_0^\frac \pi 6 \frac {\sec^2 \theta + \tan \theta \sec \theta}{\sec \theta + \tan \theta}\ d\theta \\ & = \ln (\tan \theta + \sec \theta)\ \bigg|_0^\frac \pi 6 \\ & = \ln \left(\frac 1{\sqrt 3} + \frac 2{\sqrt 3}\right) - \ln (0 + 1) \\ & = \ln (\sqrt 3) \end{aligned}

Therefore A = 3 A = \boxed 3 .

Amal Hari
Mar 19, 2019

θ = a r c s i n ( x 1 + x 2 ) \theta =arcsin\bigg(\dfrac{x}{\sqrt{1+x^{2}}}\bigg)

s i n θ = x 1 + x 2 sin\theta =\dfrac{x}{\sqrt{1+x^{2}}}

c o s θ = 1 1 + x 2 cos\theta =\dfrac{1}{\sqrt{1+x^{2}}}

g ( θ ) = 1 c o s θ d θ g(\theta)=\displaystyle \int \dfrac{1} {cos\theta} d\theta

g ( θ ) = s e c θ d θ g(\theta) =\displaystyle \int sec\theta d\theta

g ( θ ) = 1 2 l n 1 + s i n θ 1 s i n θ g(\theta)=\dfrac{1}{2} ln\dfrac{1+sin\theta}{1-sin\theta}

g ( π 6 ) g ( 0 ) = 1 2 l n 1 + s i n ( π 6 ) 1 s i n ( π 6 ) 1 2 l n 1 + s i n 0 1 s i n 0 g(\dfrac{\pi}{6})-g(0)=\dfrac{1}{2} ln \dfrac {1+sin(\dfrac{\pi}{6})}{1-sin(\dfrac{\pi}{6}}) -\dfrac{1}{2} ln\dfrac{1+sin0}{1-sin0}

1 2 ( l n 3 l n 1 ) \dfrac{1}{2}( ln 3 - ln 1)

g ( π 6 ) g ( 0 ) = l n ( 3 ) g(\dfrac{\pi}{6})-g(0)=ln(\sqrt{3})

Since sin \sin , cos \cos , and ln \ln are functions we should put a backslash "\" before them like \theta, \frac, and \int. For example: \sin \theta sin θ \sin \theta . Note that unlike sin \theta s i n θ sin \theta , sin is not in italic which is meant for constant and variable and there is a space between sin \sin and θ \theta . I have amended the problem for you.

Chew-Seong Cheong - 2 years, 2 months ago

Log in to reply

Thanks for helping me :)

Amal Hari - 2 years, 2 months ago

Log in to reply

Why don't you try editing your solution.

Chew-Seong Cheong - 2 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...