Trig integral

Calculus Level 5

0 π / 2 x cos x sin x ( 16 cos 2 x + 9 sin 2 x ) 2 d x \int_0^{\pi /2} \dfrac{ x\cos x \sin x}{(16\cos^2 x + 9\sin^2 x)^2 } \, dx

If the value of the integral above is in the form of π 4 A \dfrac{\pi}{4A} , find A A .


The answer is 252.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jan 25, 2016

Integrating by parts, and using the substitution u = tan x u = \tan x gives 0 1 2 π 14 x sin x cos x ( 16 cos 2 x + 9 sin 2 x ) 2 d x = [ x 16 cos 2 x + 9 sin 2 x ] 0 1 2 π 0 1 2 π d x 16 cos 2 x + 9 sin 2 x = π 18 0 1 2 π sec 2 x d x 16 + 9 tan 2 x = π 18 0 d u 16 + 9 u 2 = π 18 [ 1 12 tan 1 ( 3 u 4 ) ] 0 = π 18 π 24 = π 72 \begin{array}{rcl} \displaystyle \int_0^{\frac12\pi} \frac{14x \sin x \cos x}{(16\cos^2x + 9\sin^2x)^2}\,dx & = & \displaystyle \left[ \frac{x}{16\cos^2x + 9\sin^2x}\right]_0^{\frac12\pi} - \int_0^{\frac12\pi} \frac{dx}{16\cos^2x + 9\sin^2x} \\ & = & \displaystyle \frac{\pi}{18} - \int_0^{\frac12\pi} \frac{\sec^2x\,dx}{16 + 9\tan^2x} \\ & = & \displaystyle \frac{\pi}{18} - \int_0^\infty \frac{du}{16 + 9u^2} \; = \; \frac{\pi}{18} - \Big[ \frac{1}{12}\tan^{-1}\big(\tfrac{3u}{4}\big)\Big]_0^\infty \\ & = & \displaystyle \frac{\pi}{18} - \frac{\pi}{24} \; = \; \frac{\pi}{72} \end{array} so that 0 1 2 π x sin x cos x ( 16 cos 2 x + 9 sin 2 x ) 2 d x = π 1008 , \int_0^{\frac12\pi} \frac{x \sin x \cos x}{(16\cos^2x + 9\sin^2x)^2}\,dx \; = \; \frac{\pi}{ 1008} \;, and so the answer is 1008 ÷ 4 = 252 1008 \div 4 \,=\, \boxed{252} .

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...