"Trig-ky" Derivative

Calculus Level 3

Suppose that f ( x ) = sin 4 x + cos 4 x f(x) = \sin^4 x + \cos^4 x is continuous over the real numbers, and that the value

d 2019 d x 2019 f ( 5 π 16 ) = a b \frac{d^{2019}}{dx^{2019}}f\left(-\frac{5\pi}{16}\right) = a^b

where a a is a prime number and b b is a positive rational number. Find the value of a + b a + b .


The answer is 4037.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 24, 2019

f ( x ) = sin 4 x + cos 4 x = ( sin 2 x + cos 2 x ) 2 2 sin 2 x cos 2 x = 1 1 2 sin 2 ( 2 x ) = 1 1 4 ( 1 cos ( 4 x ) ) = 3 4 + 1 4 cos ( 4 x ) By Euler’s formula e θ i = cos θ + i sin θ = 3 4 + 1 4 ( e 4 x i ) where ( z ) denotes the real part of z . \begin{aligned} f(x) & = \sin^4 x + \cos^4 x \\ & = (\sin^2x+\cos^2 x)^2 - 2\sin^2 x \cos^2 x \\ & = 1 - \frac 12 \sin^2 (2x) \\ & = 1 - \frac 14(1-\cos (4x)) \\ & = \frac 34 + \frac 14 \color{#3D99F6} \cos (4x) & \small \color{#3D99F6} \text{By Euler's formula }e^{\theta i} = \cos \theta + i \sin \theta \\ & = \frac 34 + \frac 14 \color{#3D99F6} \Re \left(e^{4xi}\right) & \small \color{#3D99F6} \text{where } \Re(z) \text{ denotes the real part of }z. \end{aligned}

Then we have:

f ( x ) = d d x ( 3 4 + 1 4 ( e 4 x i ) ) = ( i e 4 x i ) f ( x ) = ( 4 i 2 e 4 x i ) f ( x ) = ( 4 2 i 3 e 4 x i ) f ( n ) ( x ) = ( 4 ( n 1 ) i n e 4 x i ) where f ( n ) denotes d n d x n . \begin{aligned} f'(x) & = \frac d{dx} \left(\frac 34 + \frac 14 \Re \left(e^{4xi}\right) \right) = \Re \left(i e^{4xi}\right) \\ f'' (x) & = \Re \left(4i^2 e^{4xi}\right) \\ f''' (x) & = \Re \left(4^2i^3 e^{4xi}\right) \\ \implies f^{(n)} (x) & = \Re \left(4^{(n-1)}i^n e^{4xi}\right) & \small \color{#3D99F6} \text{where } f^{(n)} \text{ denotes }\frac {d^n}{dx^n}. \end{aligned}

Therefore,

f ( 2019 ) ( 5 π 16 ) = ( 4 2018 i 2019 e 5 4 π i ) = ( 2 4036 ( i ) ( cos 5 4 π i sin 5 4 π ) ) = 2 4036 sin 5 4 π = 2 4036 × 1 2 = 2 4035.5 \begin{aligned} f^{(2019)} \left(-\frac {5\pi}{16} \right) & = \Re \left(4^{2018}i^{2019} e^{-\frac 54\pi i}\right) \\ & = \Re \left(2^{4036}(-i) \left(\cos \frac 54 \pi - i \sin \frac 54 \pi \right) \right) \\ & = - 2^{4036} \sin \frac 54 \pi = 2^{4036} \times \frac 1{\sqrt 2} \\ & = 2^{4035.5} \end{aligned}

Implying a + b = 2 + 4035.5 = 4037.5 a+b= 2+4035.5 = \boxed{4037.5} .

Naren Bhandari
Jan 26, 2019

After some simplification the function we have f ( x ) = 1 sin 2 2 x 2 = 1 1 4 cos 4 x 4 f(x) = 1 -\frac{\sin^22x}{2}=1-\frac{1}{4}-\frac{\cos4x}{4} Since the derivatives of constants vanishes. Left to derivate cos 4 x 4 \frac{\cos 4x}{4} . As f n ( cos ( a x + b ) ) = a n cos ( a x + b + n π 2 ) f^n(\cos (ax+b) )=a^n\cos \left(ax+b+\frac{n\pi}{2}\right) Set a = 4 , b = 0 a=4 ,b=0 multiple by 1 4 -\frac{1}{4} 1 4 f n cos 4 x = 4 n 4 cos ( 4 x + n π 2 ) = 4 n 1 cos ( 4 x + n π 2 ) -\frac{1}{4}f^n\cos4x =-\dfrac{4^n}{4}\cos\left(4x+\frac{n\pi}{2}\right)=-4^{n-1}\cos\left(4x+\frac{n\pi}{2}\right) Thus required derivates at n = 2019 n=2019 and x = 5 π 16 x=-\frac{5\pi}{16} is = 4 2018 cos ( 5 π 4 + 2019 π 2 ) = 4 2018 cos ( 5 π 4 ) = 2 4036 2 = 2 4036 0.5 =-4^{2018}\cos\left(-\frac{5\pi}{4}+\frac{2019\pi}{2}\right)=-4^{2018} \cos\left(\frac{5\pi}{4}\right)=\dfrac{2^{4036}}{\sqrt 2}=2^{4036-0.5} And gives a + b = 4037.5 a+b=4037.5

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...