Trig +Nested Radicals = Fun

Geometry Level 4

If 2 + 2 + 2 \sqrt{2 + \sqrt{2+\sqrt2}} is in the form of A cos ( B C π ) A \cos \left( \dfrac BC \pi \right) , where A A , B B , and C C are positive integers with B B and C C being coprime integers, find the minimum value of A + B + C A+B+C .

Bonus : Investigate why 2 + 2 + 2 = 2 \sqrt { 2+\sqrt { 2+\sqrt { 2 \cdots} } } =2 using trigonometry.


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 16, 2019

We know that cos 2 θ = 2 cos 2 θ 1 \cos 2\theta = 2\cos^2 \theta - 1 . Then cos θ = 2 cos θ 2 1 \cos \theta = 2\cos \frac \theta 2-1 and

cos θ 2 = 1 2 + 1 2 cos θ cos θ 4 = 1 2 + 1 2 cos θ 2 = 1 2 + 1 2 1 2 + 1 2 cos θ Similarly cos θ 8 = 1 2 + 1 2 1 2 + 1 2 + 1 2 cos θ Multiply both sides by 2 2 cos θ 8 = 2 + 2 + 2 + cos θ Setting θ = π 2 2 cos π 16 = 2 + 2 + 2 \begin{aligned} \cos \frac \theta 2 & = \sqrt{\frac 12 + \frac 12 \cos \theta} \\ \cos \frac \theta 4 & = \sqrt{\frac 12 + \frac 12 \cos \frac \theta 2} = \sqrt{\frac 12 + \frac 12 \sqrt{\frac 12 + \frac 12 \cos \theta}} & \small \color{#3D99F6} \text{Similarly} \\ \cos \frac \theta 8 & = \sqrt{\frac 12 + \frac 12 \sqrt{\frac 12 + \sqrt{\frac 12 + \frac 12 \cos \theta}}} & \small \color{#3D99F6} \text{Multiply both sides by 2} \\ 2 \cos \frac \theta 8 & = \sqrt{2 + \sqrt{2 + \sqrt{2 + \cos \theta}}} & \small \color{#3D99F6} \text{Setting }\theta = \frac \pi 2 \\ 2 \cos \frac \pi {16} & = \sqrt{2 + \sqrt{2 + \sqrt 2}} \end{aligned}

Therefore, A + B + C = 2 + 1 + 16 = 16 A+B+C = 2+1+16 = \boxed{16} .


Bonus: We note that 2 cos π 2 n + 1 = 2 + 2 + 2 + 2 Number of 2 = n 2 \cos \dfrac \pi{2^{n+1}} = \underbrace{\sqrt{2+\sqrt{2+\sqrt{2+\cdots \sqrt{2}}}}}_{\text{Number of 2}=n} . Therefore lim n 2 cos π 2 n + 1 = 2 cos 0 = 2 \displaystyle \lim_{n \to \infty} 2 \cos \dfrac \pi{2^{n+1}} = 2 \cos 0 = 2 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...