Trig-o-no-metry!

Geometry Level 1

If sin A + sin 2 A = 1 , \sin A +\sin^{2}A=1, find the value of cos 2 A + cos 4 A . \cos ^{2} A + \cos ^{4} A.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

14 solutions

Andrew Sebok
Sep 26, 2014

sin ( A ) + sin 2 ( A ) = 1 sin 2 ( A ) = 1 sin ( A ) cos 2 ( A ) + cos 4 ( A ) = [ 1 sin 2 ( A ) ] + [ 1 sin 2 ( A ) ] 2 = [ 1 ( 1 sin ( A ) ) ] + [ 1 ( 1 sin ( A ) ) ] 2 = sin ( A ) + [ sin ( A ) ] 2 = 1 \sin (A)+\sin ^{ 2 } (A)=1\, \, \, \Longrightarrow \, \, \, \sin ^{ 2 } (A)=1-\sin (A) \\ \\ \\ \\ \begin{aligned} \cos ^{ 2 } (A)+\cos ^{ 4 } (A) & =[1-\sin ^{ 2 } (A)]+[1-\sin ^{ 2 } (A)]^{ 2 } \\ & =[1-(1-\sin (A))]+[1-(1-\sin (A))]^{ 2 } \\ & =\sin (A)+[\sin (A)]^{ 2 } \\ & =1 \end{aligned}

Phillip Ross
Jul 5, 2014

A trigonometric identity will help: c o s 2 ( A ) cos^{2}(A) + s i n 2 ( A ) sin^{2}(A) =1

equating s i n ( A ) sin(A) + s i n 2 ( A ) sin^{2}(A) =1 to above identity gives:

c o s 2 ( A ) cos^{2}(A) + s i n 2 ( A ) sin^{2}(A) = s i n ( A ) sin(A) + s i n 2 ( A ) sin^{2}(A)

Canceling like terms yields: s i n ( A ) sin(A) = c o s 2 ( A ) cos^{2}(A)

Since s i n ( A ) sin(A) + s i n 2 ( A ) sin^{2}(A) =1, substituting s i n ( A ) sin(A) for c o s 2 ( A ) cos^{2}(A) gives:

c o s 2 ( A ) cos^{2}(A) + ( c o s 2 ( A ) ) 2 (cos^{2}(A))^{2} =1

which is:

c o s 2 ( A ) cos^{2}(A) + c o s 4 ( A ) cos^{4}(A) =1

Anand Raj
Jul 5, 2014

S i n A = cos 2 A SinA = \cos ^{ 2 }{ A } And The Rest Follows!

Amr Abdelnoor
Mar 17, 2016

Hassan Raza
Jul 30, 2014

G i v e n T h a t s i n A + sin 2 A = 1 = > sin 2 A = 1 sin A S o , 1 cos 2 A = 1 sin A : A s sin 2 A = 1 cos 2 A : o r cos 2 A = sin A . . . . . . . . . . . ( h ) W e h a v e t o f i n d cos 2 A cos 4 A o r cos 2 A + ( cos 2 A ) 2 P u t t i n g cos 2 A = sin A f r o m ( h ) w e h a v e s i n A + sin 2 A = > s i n A + sin 2 A = 1 G i v e n Given\quad That\\ sinA+\sin ^{ 2 }{ A } =1\\ =>\quad \sin ^{ 2 }{ A } =1-\sin { A } \quad So,\\ 1-\cos ^{ 2 }{ A } =1-\sin { A } \qquad \qquad :As\quad \sin ^{ 2 }{ A } =1-\cos ^{ 2 }{ A } :\\ or\quad \cos ^{ 2 }{ A } =\sin { A } ...........\quad (h)\\ We\quad have\quad to\quad find\\ \cos ^{ 2 }{ A } \cos ^{ 4 }{ A } \\ or\quad \cos ^{ 2 }{ A } +{ (\cos ^{ 2 }{ A) } }^{ 2 }\quad Putting\quad \cos ^{ 2 }{ A } =\sin { A } \quad from\quad (h)\\ we\quad have\\ sinA+\sin ^{ 2 }{ A } =>\quad \boxed { sinA+\sin ^{ 2 }{ A } =1 } \quad \quad \quad Given\\ \\

Sowmya Manukonda
Jul 2, 2014

Sin^2(A)+Cos^2(A)=1 , from this and given equation Cos^2(A)= Sin(A) . Substitute in the required one ultimate expression will be Sin(A)+Sin^2(A)=1

Jj Bassig
Mar 17, 2016

sin(A) + sin^2 (A) = 1

sin(A) = 1 - sin^2 (A)

sin (A) = cos^2 (A) ===> square both sides

sin^2 (A) = cos^4 (A)

1 - cos^2 (A) = cos^4 (A)

1 = cos^2 (A) + cos^4 (A)

Karan Yadav
Nov 23, 2014

First U find out sinA, sinA+sin2A=1...........(i) sinA=1-sin2A sinA=cos2a.........(ii) (cos2A=1-sin2A)

Then, cos2A+cos4A=cos2A+(cos2A)^2 =sinA+(sinA)^2 =sinA+sin2A =1 So, cos2A+cos4A=1

Hari Dy
Oct 9, 2014

sinA=1-sin^2A=cos^2A sin^2A=cos^4A 1-cos^2A=cos^4A cos^2A+cos^4A=1.

Shabana Khan
Jul 23, 2014

sinA+sin^2A=1

SIN^2A=1-SINA

COS^2A=ROOT OVER 1-SIN^2A

=SINA

AND COS^4A=(SINA)^2

=SIN^2A

THEREFORE COS^2A+ COS^4A=1[SINCE SINA+SIN^2A=1]

Jiro Dy
Jul 19, 2014

sin C + sin^2 A = 1 sin A + sin^2 A = 1, we know that sin^2 A = 1 – cos^2 A sin A + (1 – cos^2 A) = 1 sin A + 1 – cos^2 A = 1 sin A – cos^2 A = 0 - cos^2 A = -sin A cos^2 A = sin A cos^2 A + cos^4 A = cos^2 A + cos^2 A * cos^2 A Substitute: sin A + sin x * sin A = sin A + sin^2 A but sin A + sin^2 A = 1 therefore: cos^2 A + cos^4 A = sin x + sin2 A = 1

Kumar Avishek
Jul 11, 2014

1-sin^2 A = Cos^2 A= SinA so we can replace COS^4A as SIN^2A and COS^2A+SIN^2A=1

Prince Mishra
Jul 8, 2014

sinA=1-sin^2A=cos^2A put it in the question and ans will be 1

Reshma Ramesh
Jul 3, 2014

Cos^2 a +cos^4 a = 1- sin^2 a + (1- sin^2 a)( 1- sin^2 a) = 1- sin^2 a+[(1-(1-sin a)) (1-(1-sin a))] = 1- sin^2 a+(sin^2 a) = 1

It is simple sina = cos.^2a

sanjeev raj - 6 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...