If sin A + sin 2 A = 1 , find the value of cos 2 A + cos 4 A .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
A trigonometric identity will help: c o s 2 ( A ) + s i n 2 ( A ) =1
equating s i n ( A ) + s i n 2 ( A ) =1 to above identity gives:
c o s 2 ( A ) + s i n 2 ( A ) = s i n ( A ) + s i n 2 ( A )
Canceling like terms yields: s i n ( A ) = c o s 2 ( A )
Since s i n ( A ) + s i n 2 ( A ) =1, substituting s i n ( A ) for c o s 2 ( A ) gives:
c o s 2 ( A ) + ( c o s 2 ( A ) ) 2 =1
which is:
c o s 2 ( A ) + c o s 4 ( A ) =1
S i n A = cos 2 A And The Rest Follows!
G i v e n T h a t s i n A + sin 2 A = 1 = > sin 2 A = 1 − sin A S o , 1 − cos 2 A = 1 − sin A : A s sin 2 A = 1 − cos 2 A : o r cos 2 A = sin A . . . . . . . . . . . ( h ) W e h a v e t o f i n d cos 2 A cos 4 A o r cos 2 A + ( cos 2 A ) 2 P u t t i n g cos 2 A = sin A f r o m ( h ) w e h a v e s i n A + sin 2 A = > s i n A + sin 2 A = 1 G i v e n
Sin^2(A)+Cos^2(A)=1 , from this and given equation Cos^2(A)= Sin(A) . Substitute in the required one ultimate expression will be Sin(A)+Sin^2(A)=1
sin(A) + sin^2 (A) = 1
sin(A) = 1 - sin^2 (A)
sin (A) = cos^2 (A) ===> square both sides
sin^2 (A) = cos^4 (A)
1 - cos^2 (A) = cos^4 (A)
1 = cos^2 (A) + cos^4 (A)
First U find out sinA, sinA+sin2A=1...........(i) sinA=1-sin2A sinA=cos2a.........(ii) (cos2A=1-sin2A)
Then, cos2A+cos4A=cos2A+(cos2A)^2 =sinA+(sinA)^2 =sinA+sin2A =1 So, cos2A+cos4A=1
sinA=1-sin^2A=cos^2A sin^2A=cos^4A 1-cos^2A=cos^4A cos^2A+cos^4A=1.
sinA+sin^2A=1
SIN^2A=1-SINA
COS^2A=ROOT OVER 1-SIN^2A
=SINA
AND COS^4A=(SINA)^2
=SIN^2A
THEREFORE COS^2A+ COS^4A=1[SINCE SINA+SIN^2A=1]
sin C + sin^2 A = 1 sin A + sin^2 A = 1, we know that sin^2 A = 1 – cos^2 A sin A + (1 – cos^2 A) = 1 sin A + 1 – cos^2 A = 1 sin A – cos^2 A = 0 - cos^2 A = -sin A cos^2 A = sin A cos^2 A + cos^4 A = cos^2 A + cos^2 A * cos^2 A Substitute: sin A + sin x * sin A = sin A + sin^2 A but sin A + sin^2 A = 1 therefore: cos^2 A + cos^4 A = sin x + sin2 A = 1
1-sin^2 A = Cos^2 A= SinA so we can replace COS^4A as SIN^2A and COS^2A+SIN^2A=1
sinA=1-sin^2A=cos^2A put it in the question and ans will be 1
Cos^2 a +cos^4 a = 1- sin^2 a + (1- sin^2 a)( 1- sin^2 a) = 1- sin^2 a+[(1-(1-sin a)) (1-(1-sin a))] = 1- sin^2 a+(sin^2 a) = 1
It is simple sina = cos.^2a
Problem Loading...
Note Loading...
Set Loading...
sin ( A ) + sin 2 ( A ) = 1 ⟹ sin 2 ( A ) = 1 − sin ( A ) cos 2 ( A ) + cos 4 ( A ) = [ 1 − sin 2 ( A ) ] + [ 1 − sin 2 ( A ) ] 2 = [ 1 − ( 1 − sin ( A ) ) ] + [ 1 − ( 1 − sin ( A ) ) ] 2 = sin ( A ) + [ sin ( A ) ] 2 = 1