Trig problem 3

Geometry Level pending

Let θ \theta be an acute angle. The equation x 2 ( t a n θ + 1 t a n θ ) x + 1 = 0 x^{ 2 }-(tan\theta +\frac { 1 }{ tan\theta } )x+1=0 has one root 2 + 3 2+\sqrt { 3 } . What is the numerical value of s i n θ c o s θ sin\theta cos\theta ?


The answer is 0.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Julian Uy
Dec 5, 2014

Let the other equation of x 2 ( t a n θ 1 t a n θ ) x + 1 = 0 { x }^{ 2 }-(tan\theta -\frac { 1 }{ tan\theta } )x+1=0 as α \alpha .

Using the relationship of roots and coefficients, we have α ( 2 + 3 ) \alpha (2+\sqrt { 3 } ) =1

α \alpha = 1 2 + 3 \frac { 1 }{ 2+\sqrt { 3 } } = 2 3 2-\sqrt { 3 }

Then α + ( 2 + 3 ) \alpha +(2+\sqrt { 3 } ) = ( 2 3 ) + ( 2 + 3 ) = 4 = t a n θ + 1 t a n θ (2-\sqrt { 3 } )+(2+\sqrt { 3 } )=4=tan\theta +\frac { 1 }{ tan\theta }

So that t a n θ + 1 t a n θ = s i n θ c o s θ + c o s θ s i n θ = 1 s i n θ c o s θ = 4 tan\theta +\frac { 1 }{ tan\theta } =\frac { sin\theta }{ cos\theta } +\frac { cos\theta }{ sin\theta } =\frac { 1 }{ sin\theta cos\theta } =4

s i n θ c o s θ sin\theta cos\theta = 0.25 \boxed { 0.25 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...