Trig problem or limit problem?

Geometry Level 3

lim n r = 1 n tan ( π 4 × 2 r ) sec ( π 4 × 2 r 1 ) = ? \lim _{ n\rightarrow \infty }{ \sum _{ r=1 }^{ n }{ \tan { \left( \frac { \pi }{ 4 \times { 2 }^{ r } } \right) } \sec { \left( \frac { \pi }{ 4\times { 2 }^{ r-1 } } \right) } } } = \ ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vishnu Kadiri
Apr 11, 2019

Let π 4 = A \frac { \pi }{ 4 } =A . Therefore, tan A 2 sec A = sin A 2 cos A 2 cos A = sin A cos A 2 cos A sin A 2 cos A 2 cos A = tan A tan A 2 \tan { \frac { A }{ 2 } } \sec { A } =\frac { \sin { \frac { A }{ 2 } } }{ \cos { \frac { A }{ 2 } } \cos { A } } =\frac { \sin { A } \cos { \frac { A }{ 2 } } -\cos { A } \sin { \frac { A }{ 2 } } }{ \cos { \frac { A }{ 2 } } \cos { A } } =\tan { A } -\tan { \frac { A }{ 2 } } lim n r = 1 n tan ( π 4 2 r ) sec ( π 4 2 r 1 ) = lim n tan A tan A 2 n + 1 = tan π 4 = 1 \lim _{ n\rightarrow \infty }{ \sum _{ r=1 }^{ n }{ \tan { \left( \frac { \pi }{ 4*{ 2 }^{ r } } \right) } \sec { \left( \frac { \pi }{ 4*{ 2 }^{ r-1 } } \right) } } } =\lim _{ n\rightarrow \infty }{ \tan { A } -\tan { \frac { A }{ { 2 }^{ n+1 } } } } =\tan { \frac { \pi }{ 4 } } =1

Very nice! Although the property you prove holds for all A A (apart from undefined points of the tangent and secant functions). What you can show is that the sum telescopes for any A A , then plug in A = π 4 A=\frac{\pi}{4} at the end (at the moment, it looks as though the identity is a special property of A = π 4 A=\frac{\pi}{4} )

Chris Lewis - 2 years, 1 month ago

Log in to reply

Yes, thanks for pointing out!

Vishnu Kadiri - 2 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...