Trig Simplification (2)

Geometry Level 3

Simplify the following fraction:

sec α sec β sec γ tan α + tan β + tan γ tan α tan β tan γ \dfrac {\sec \alpha \sec \beta \sec \gamma}{\tan \alpha + \tan \beta + \tan \gamma - \tan \alpha \tan \beta \tan \gamma}

csc ( α + β + γ ) \csc (\alpha + \beta + \gamma) cot ( α + β + γ ) \cot (\alpha + \beta + \gamma) sec ( α + β + γ ) \sec (\alpha + \beta + \gamma) None of the above

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Rakshit Pandey
Jul 16, 2014

Given :
sec α sec β sec γ tan α + tan β + tan γ tan α tan β tan γ \frac {\sec\alpha \sec\beta \sec\gamma}{\tan\alpha+\tan\beta+\tan\gamma-\tan\alpha\tan\beta\tan\gamma}
Since, sec x = 1 cos x \sec x= \frac{1}{\cos x} for any x \angle x ,
therefore, we can write the given expression as:
1 cos α cos β cos γ ( tan α + tan β + tan γ tan α tan β tan γ ) \Rightarrow\frac {1} {\cos\alpha\cos\beta\cos\gamma(\tan\alpha+\tan\beta+\tan\gamma-\tan\alpha\tan\beta\tan\gamma)}
Now, since we know that tan α = sin α cos α \tan\alpha = \frac{\sin\alpha}{\cos\alpha} ,
we can write the above expression as:
1 ( cos α cos β cos γ ) ( sin α cos α + sin β cos β + sin γ cos γ sin α sin β sin γ cos α cos β cos γ ) \Rightarrow\frac{1}{(\cos\alpha\cos\beta\cos\gamma)(\frac{\sin\alpha}{\cos\alpha}+\frac{\sin\beta}{\cos\beta}+\frac{\sin\gamma}{\cos\gamma}-\frac{\sin\alpha\sin\beta\sin\gamma}{\cos\alpha\cos\beta\cos\gamma})}
= 1 ( sin α cos β cos γ ) + ( sin β cos α cos γ ) + ( sin γ cos α cos β ) ( sin α sin β sin γ ) =\frac{1}{(\sin\alpha\cos\beta\cos\gamma)+(\sin\beta\cos\alpha\cos\gamma)+(\sin\gamma\cos\alpha\cos\beta)-(\sin\alpha\sin\beta\sin\gamma)}
= 1 sin α ( cos β cos γ sin β sin γ ) + cos α ( sin β cos γ + cos β sin γ ) =\frac{1}{{\sin\alpha(\cos\beta\cos\gamma-\sin\beta\sin\gamma)}+{\cos\alpha(\sin\beta\cos\gamma+\cos\beta\sin\gamma)}}
= 1 sin α cos ( β + γ ) + cos α sin ( β + γ ) =\frac{1}{{\sin\alpha\cos(\beta+\gamma)}+{\cos\alpha\sin(\beta+\gamma)}}
= 1 sin ( α + β + γ ) =\frac{1}{\sin(\alpha+\beta+\gamma)}
= c o s e c ( α + β + γ ) =\mathrm{cosec}(\alpha+\beta+\gamma)

Multiply both the denominator and numerator with cosa.cosb.cosy. Then you can take cosy as common from the first two terms and siny common from the last two terms of denominator. After some easy steps, you will get 1/sin (a+b+y) which equals cosec (a+b+y)

how to get 1/sin (a+b+y); i got as sin (a+b+y) only

Ravi Bendi - 6 years, 11 months ago

Log in to reply

write every thing in terms of sin and cos to start to avoid confusion, when you solve you get 1/sin(a+b+y)

Abhilash Shankar - 6 years, 11 months ago

check for alpha=beta=gamma=45 its comes to be 2 \sqrt{ 2} checking for the options we get csc(45+45+45)=csc(135)= 2 \sqrt{ 2}

Aravind Vishnu
Jul 13, 2014

Multiply both the denominator and numerator with cos alpha, cos beta, cos gamma. now use the following identities after taking common terms out 1) sin(a+b)=sin a x cos b + cos a x sin b 2)cos(a+b)=cos a x cos b - sin a x sin b

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...