Trig Stuff 2

Geometry Level 5

j = 5 5 ( i = 5 j 1 sin ( π i 11 ) sin ( π j 11 ) ) = a b \large \sum _{j=-5}^5 \left(\sum _{i=-5}^{j-1} \sin \left(\frac{\pi i}{11}\right) \sin \left(\frac{\pi j}{11}\right)\right) = - \frac{a}{b}

where a a and b b are coprime positive integers. Submit a + b a+b .


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 29, 2017

Note that S = j = 5 5 ( i = 5 j 1 sin i π 11 sin j π 11 ) = \substack i , j = 5 i j n sin i π 11 sin j π 11 \displaystyle S = \sum_{j=-5}^5 \left(\sum_{i=-5}^{j-1} \sin \frac {i \pi}{11} \sin \frac {j \pi}{11} \right) = \sum_{\substack {i,j=-5 \\ i \ne j}}^n \sin \frac {i \pi}{11} \sin \frac {j \pi}{11} and that:

\begin{aligned} \left(\sum_{i=-5}^5 \sin \frac {i \pi}{11} \right)^2 & = \sum_{i=-5}^5 \sin^2 \frac {i \pi}{11} - 2 \sum_{\substack {i,j=-5 \\ i \ne j}}^n \sin \frac {i \pi}{11} \sin \frac {j \pi}{11} \\ \implies S & = \frac 12 \left(\left({\color{#3D99F6}\sum_{i=-5}^5 \sin \frac {i \pi}{11}} \right)^2 - \sum_{i=-5}^5 \sin^2 \frac {i \pi}{11} \right) & \small \color{#3D99F6} \text{Since }\sin (-x) = - \sin x \text{ and } \sin 0 = 0 \\ & = \frac 12 \left({\color{#3D99F6}0} - 2 \sum_{i=1}^5 \sin^2 \frac {i \pi}{11} \right) \\ & = - \sum_{i=1}^5 \frac 12 \left(1-\cos \frac {2i \pi}{11} \right) \\ & = - \frac 12 \left(\sum_{i=1}^5 1 - {\color{#3D99F6} \sum_{i=1}^5 \cos \frac {2i \pi}{11}} \right) & \small \color{#3D99F6} \text{Note that } \sum_{k=1}^n \cos \frac {2k \pi}{2n+1} = - \frac 12 \\ & = - \frac 12 \left(5- \left({\color{#3D99F6} -\frac 12}\right) \right) \\ & = - \frac {11}4 \end{aligned}

a + b = 11 + 4 = 15 \implies a+b = 11+4 = \boxed{15}

Hint: Vieta's formulas.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...