Trig to Surd

Level 2

Given that cos ( 1 3 arccos ( 11 16 ) ) \cos \left(\frac{1}{3}\arccos \left(\frac{11}{16}\right) \right) is one of the roots of a quadratic equation with rational coefficient, find the other root.


The answer is -0.713525.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Albert Yiyi
Feb 11, 2019

hint: cos 3 θ = 4 cos 3 θ 3 cos θ \cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta

let x = cos ( 1 3 arccos 11 16 ) 4 x 3 3 x = cos ( arccos 11 16 ) = 11 16 64 x 3 48 x 11 = 0 ( 4 x + 3 ) ( 16 x 2 4 x 11 ) = 0 x = 1 4 or 1 3 5 8 or 1 + 3 5 8 0 < 11 16 < 1 0 < arccos 11 16 < π 2 0 < 1 3 arccos 11 16 < π 6 1 2 < cos ( 1 3 arccos 11 16 ) < 1 1 2 < x < 1 x = 1 + 3 5 8 1 3 5 8 = 0.713525 \begin{aligned} \text{let }x=\cos(\frac{1}{3}\arccos \frac{11}{16}) \\ 4x^3-3x=\cos(\arccos \frac{11}{16})=\frac{11}{16} \\ 64x^3-48 x-11=0 \\ (4x+3)(16 x^2-4x-11)=0 \\ x=\frac{-1}{4} \text{ or } \frac{1-3\sqrt{5}}{8} \text{ or } \frac{1+3\sqrt{5}}{8} \\ \\ 0<\frac{11}{16}<1 \\ 0<\arccos \frac{11}{16}<\frac{\pi}{2} \\ 0<\frac{1}{3} \arccos \frac{11}{16}<\frac{\pi}{6} \\ \frac{1}{2}<\cos(\frac{1}{3} \arccos \frac{11}{16})<1 \\ \frac{1}{2}<x<1 \\ \therefore x = \frac{1+3\sqrt{5}}{8} \\ \therefore \frac{1-3\sqrt{5}}{8} = -0.713525 \end{aligned}

Excellent Solution!

Kobe Mercado - 2 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...