Trig^1

Geometry Level 3

Let y y be the rational root of x 5 8 x 4 + 2 x 3 16 x 2 + x 8 = 0 x^5 - 8x^4 + 2x^3 - 16x^2 + x - 8 = 0 . Find sin ( π y ) \sin \left(\dfrac{\pi}{y}\right) .

1 8 + 2 \frac{1}{\sqrt{\sqrt{8} + 2}} 1 8 + 4 \frac{1}{\sqrt{\sqrt{8} + 4}} 1 8 2 \frac{1}{\sqrt{\sqrt{8} -2}} 2 8 2 \frac{\sqrt{2}}{\sqrt{\sqrt{8} - 2}} 2 8 4 \frac{\sqrt{2}}{\sqrt{\sqrt{8} - 4}} 1 8 4 \frac{1}{\sqrt{\sqrt{8} - 4}} 2 8 + 2 \frac{\sqrt{2}}{\sqrt{\sqrt{8} + 2}} 2 8 + 4 \frac{\sqrt{2}}{\sqrt{\sqrt{8} + 4}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Since it is given that y y is a rational root, we can use rational root theorem . The possible roots are y = ± 1 , ± 2 , ± 4 , ± 8 y = \pm 1, \pm 2, \pm 4, \pm 8 and we find that the only root is y = 8 y=8 . Then sin ( π y ) = sin π 8 \sin \left(\frac \pi y\right) = \sin \frac \pi 8 . Consider the following:

cos π 4 = 1 2 sin 2 π 8 1 2 = 1 2 sin 2 π 8 sin 2 π 8 = 2 2 4 sin π 8 = 2 2 2 Multiply up and down by 2 + 2 = 2 2 2 + 2 = 1 2 2 + 2 = 1 8 + 4 \begin{aligned} \cos \frac \pi 4 & = 1 - 2\sin^2 \frac \pi 8 \\ \frac 1{\sqrt 2} & = 1 - 2\sin^2 \frac \pi 8 \\ \sin^2 \frac \pi 8 & = \frac {2-\sqrt 2}4 \\ \implies \sin \frac \pi 8 & = \frac {\sqrt{2-\sqrt 2}}2 & \small \color{#3D99F6} \text{Multiply up and down by }\sqrt{2+\sqrt 2} \\ & = \frac {\sqrt 2}{2\sqrt{2+\sqrt 2}} \\ & = \frac 1{\sqrt 2\sqrt{2+\sqrt 2}} \\ & = \boxed{\frac 1{\sqrt{\sqrt 8+4}}} \end{aligned}

Samuel Sturge
Aug 1, 2019

x 5 8 x 4 + 2 x 3 16 x 2 + x 8 x^5 - 8x^4 + 2x^3 - 16x^2 + x - 8 ( x 8 ) ( x 2 + 1 ) 2 (x - 8)(x^2 + 1)^2 ( x 2 + 1 ) 2 = x 4 + 2 x 2 + 1 (x^2 + 1)^2 = x^4 + 2x^2 + 1 Let u = x 2 u = x^2 Then u 2 + 2 u + 1 = 0 u^2 + 2u + 1 = 0 u = 1 u = -1 x 2 = 1 x^2 = -1 Therefore x = i , i x = i,-i are the roots of this polynomial, so 8 8 is the only rational root of the aforementioned polynomial. To find sin ( π 8 ) \sin(\frac{\pi}{8}) we will make use of the identity cos ( 2 x ) = cos 2 ( x ) sin 2 ( x ) = 2 cos 2 ( x ) 1 \cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 Setting w = 2 x w = 2x : cos ( w ) + 1 2 = cos 2 ( w 2 ) \frac{\cos(w) + 1}{2} = \cos^2(\frac{w}{2}) ; cos ( w 2 ) = cos ( w ) + 1 2 \cos(\frac{w}{2}) = \sqrt{\frac{\cos(w) + 1}{2}} Next, we will use the identity sin ( 2 x ) = 2 cos ( x ) sin ( x ) \sin(2x) = 2\cos(x)\sin(x) Setting z = 2 x z = 2x : sin ( z ) = 2 cos ( z 2 ) sin ( z 2 ) \sin(z) = 2\cos(\frac{z}{2})\sin(\frac{z}{2}) ; sin ( z ) = 2 cos ( z ) + 1 2 sin ( z 2 ) \sin(z) = 2 \sqrt{\frac{\cos(z) + 1}{2}}\sin(\frac{z}{2}) ; sin ( z 2 ) = sin ( z ) 2 cos ( z ) + 1 2 \sin(\frac{z}{2}) = \frac{\sin(z)}{ 2\sqrt{\frac{\cos(z) + 1}{2}}} ; sin ( z 2 ) = sin ( z ) 2 cos ( z ) + 2 \sin(\frac{z}{2}) = \frac{\sin(z)}{ \sqrt{2\cos(z) + 2}} ; Substituting z = π 4 z = \frac{\pi}{4} : sin ( π 8 ) = sin ( π 4 ) 2 cos ( π 4 ) + 2 = 2 2 2 + 2 = 1 2 2 + 2 = 1 8 + 4 \sin(\frac{\pi}{8}) = \frac{\sin(\frac{\pi}{4})}{ \sqrt{2\cos(\frac{\pi}{4}) + 2}} = \frac{\sqrt{2}}{2\sqrt{\sqrt{2} + 2}} = \frac{1}{\sqrt{2}\sqrt{\sqrt{2} + 2}} = \frac{1}{\sqrt{\sqrt{8} + 4}}

Note: this is not a computer science problem (use your skills, not a calculator)

Samuel Sturge - 1 year, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...