Trigcky integral

Calculus Level 3

Evaluate the following integral:

0 π / 2 x lim N k = 1 N cos ( x 2 k ) d x \int_{0}^{\pi/2} x \lim_{N \rightarrow \infty} \prod_{k=1}^{N} \cos \left ( \frac{x}{2^k} \right ) dx

1 π \pi 0 2 π 2\pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Since @Naren Bhandari has posted part of the solution, here it goes how to prove that

k = 1 cos ( x 2 k ) = sin x x . \prod_{k=1}^{\infty} \cos \left ( \frac{x}{2^k} \right ) = \frac{\sin x}{x}.

Observe that

k = 1 N cos ( x 2 k ) = cos ( x 2 ) cos ( x 4 ) cos ( x 2 N ) \prod_{k=1}^{N} \cos \left ( \frac{x}{2^k} \right ) = \cos \left ( \frac{x}{2} \right ) \cos \left ( \frac{x}{4} \right ) \cdots \cos\left ( \frac{x}{2^N} \right )

may be written as

sin x 2 sin ( x 2 ) sin ( x 2 ) 2 sin ( x 4 ) sin ( x 2 ( N 1 ) ) 2 sin ( x 2 N ) = sin x 2 N sin ( x 2 N ) , \frac{\sin x}{2 \sin \left (\frac{x}{2} \right )} \frac{\sin \left ( \frac{x}{2} \right )}{2 \sin \left (\frac{x}{4} \right )} \cdots \frac{\sin \left ( \frac{x}{2^{(N-1)}} \right )}{2 \sin \left (\frac{x}{2^N} \right )}= \frac{\sin x}{2^N \sin\left ( \frac{x}{2^N} \right )},

since it is well-known that sin ( 2 α ) = 2 sin ( α ) cos ( α ) . \sin(2 \alpha) = 2 \sin( \alpha ) \cos( \alpha ). Therefore if we take the limit

lim N k = 1 N cos ( x 2 k ) = lim N sin x 2 N sin ( x 2 N ) = sin x lim N 2 N sin ( x 2 N ) , \lim_{N \rightarrow \infty} \prod_{k=1}^{N} \cos \left ( \frac{x}{2^k} \right ) = \lim_{N \rightarrow \infty} \frac{\sin x}{2^N \sin\left ( \frac{x}{2^N} \right )} = \sin x \lim_{N \rightarrow \infty} \frac{2^{-N}}{ \sin\left ( \frac{x}{2^N} \right )},

we may use L'Hospital's rule to get

sin x lim N 2 N sin ( x 2 N ) = sin x lim N d d N 2 N d d N sin ( x 2 N ) = sin x lim N 2 N ( N ) ln 2 x cos ( x 2 N ) 2 N ( N ) ln 2 = sin x x . \sin x \lim_{N \rightarrow \infty} \frac{2^{-N}}{ \sin\left ( \frac{x}{2^N} \right )} = \sin x \lim_{N \rightarrow \infty} \frac{\frac{\mathrm{d} }{\mathrm{d} N} 2^{-N}}{\frac{\mathrm{d} }{\mathrm{d} N} \sin\left ( \frac{x}{2^N} \right )} = \sin x \lim_{N \rightarrow \infty} \frac{2^{-N} (-N) \ln 2}{x \cos\left ( \frac{x}{2^N} \right ) 2^{-N} (-N) \ln 2} = \frac{\sin x}{x}.

Naren Bhandari
Nov 22, 2018

Since sin x x = lim N k = 1 N cos x 2 k sin x = lim N k = 1 N x cos x 2 k \dfrac{\sin x}{x} =\lim_{N\to \infty} \prod_{k=1}^{N}\cos \dfrac{x}{2^k} \implies \sin x =\lim_{N\to \infty} \prod_{k=1}^{N}x\cdot \cos \dfrac{x}{2^k} and hence 0 1 2 π lim N k = 1 N x cos x 2 k d x = 0 1 2 π sin x d x = 1 \int_{0}^{\frac{1}{2}\pi}\lim_{N\to \infty} \prod_{k=1}^{N}x\cdot \cos \dfrac{x}{2^k}\,dx = \int_{0}^{\frac{1}{2}\pi} \sin x\,dx = 1

I didn't take the negative sign in account. Thanks for bringing that up. Have already corrected the limits of integration. ;)

A Former Brilliant Member - 2 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...