Trigger Calculus!

Calculus Level 2

If 0 10 f ( x ) d x = 5 \displaystyle \int _{ 0 }^{ 10 }{ f\left( x \right)dx } = 5 , then find the value of

k = 1 10 0 1 f ( k 1 + x ) d x \large\ \sum _{ k = 1 }^{ 10 }{ \int _{ 0 }^{ 1 }{ f\left( k - 1 + x \right)dx } }


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Marta Reece
Aug 12, 2017

k = 1 10 0 1 f ( k 1 + x ) d x = \large\ \sum _{ k = 1 }^{ 10 }{ \int _{ 0 }^{ 1 }{ f\left( k - 1 + x \right)dx } } =

0 1 f ( x ) d x + 0 1 f ( 1 + x ) d x + 0 1 f ( 2 + x ) d x + . . . + 0 1 f ( 9 + x ) d x = \int _{ 0 }^{ 1 }f(x)dx +\int _{ 0 }^{ 1 }{ f\left(1 + x \right)}dx+\int _{ 0 }^{ 1 } f\left( 2 + x \right)dx +...+\int _{ 0 }^{ 1 } f\left(9 + x \right)dx =

0 1 f ( x ) d x + 1 2 f ( x ) d x + 2 3 f ( x ) d x + . . . + 9 10 f ( x ) d x = \int _{ 0 }^{ 1 }f(x)dx +\int _{1 }^{2}{ f\left( x \right)}dx+\int _{2}^{3} f\left(x \right)dx +...+\int _{9}^{ 10 } f\left(x \right)dx =

0 10 f ( x ) d x = 5 \int _{0}^{ 10 } f\left(x \right)dx =\boxed5

That is what i did. Great solution .

Priyanshu Mishra - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...