triggy got even better !

Geometry Level 2

If sinx/siny=3 and if cosx/cosy=1/2 find sin2x/sin2y+cos2x/cos2y

41/58 48/58 1 49/58

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 27, 2014

It is given that: sin x sin y = 3 \dfrac {\sin{x}}{\sin{y}} = 3 and cos x cos y = 1 2 \dfrac {\cos{x}}{\cos{y}} = \dfrac {1}{2} .

sin y = 1 3 sin x cos y = 2 cos x \Rightarrow \sin {y} = \frac {1}{3}\sin {x}\quad \cos {y} = 2 \cos {x}

sin 2 y = 1 9 sin 2 x cos 2 y = 4 cos 2 x \Rightarrow \sin^2 {y} = \frac {1}{9}\sin^2 {x}\quad \cos^2 {y} = 4 \cos^2 {x}

sin 2 y + cos 2 y = 1 9 sin 2 x + 4 cos 2 x = 1 \Rightarrow \sin^2{y} + \cos^2{y} = \frac {1}{9}\sin^2 {x} + 4 \cos^2 {x} = 1

1 9 sin 2 x + 4 ( 1 sin 2 x ) = 1 \Rightarrow \frac {1}{9}\sin^2 {x} + 4(1- \sin^2 {x}) = 1

( 4 1 9 ) sin 2 x = 4 1 35 9 sin 2 x = 3 sin 2 x = 27 35 \Rightarrow (4-\frac {1}{9})\sin^2 {x} = 4-1\quad \Rightarrow \frac {35}{9} \sin^2 {x} = 3 \quad \Rightarrow \sin^2 {x} = \frac {27}{35}

sin 2 y = 1 9 sin 2 x = 1 9 × 27 35 = 3 35 \Rightarrow \sin^2 {y} = \frac {1}{9}\sin^2 {x} = \frac {1}{9}\times \frac {27}{35} = \frac {3}{35}

Now, we work on:

sin 2 x sin 2 y + cos 2 x cos 2 y = 2 sin x cos x 2 sin y cos y + 1 2 sin 2 x 1 2 sin 2 y = 3 × 1 2 + 1 54 35 1 6 35 \dfrac {\sin{2x}}{\sin{2y}} + \dfrac {\cos{2x}}{\cos{2y}} = \dfrac {2\sin{x}\cos{x}}{2\sin{y}\cos{y}} + \dfrac {1-2\sin^2{x}}{1-2\sin^2{y}} = 3\times \dfrac {1}{2} + \dfrac {1-\frac{54}{35}}{1-\frac{6}{35}}

= 3 2 + 35 54 35 6 = 3 2 19 29 = 87 38 58 = 49 58 \quad \quad \quad \quad \quad \quad \quad \space = \dfrac {3}{2} + \dfrac {35-54}{35-6} = \dfrac {3}{2} - \dfrac {19} {29} = \dfrac {87-38}{58} = \boxed{\frac {49}{58}}

is there any other method ?

Guru Prasaadh - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...