Triggy Integral

Calculus Level 3

Let f ( t ) = t t cos x sin x cos x + sin x d x f(t)=\int^t_{-t} \frac{\cos x - \sin x }{\cos x + \sin x}\;\mathrm dx Compute the value of f ( 1 / 2 ) f(1/2) to 3 significant figures.


The answer is 1.23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Firstly notice that the integrand is of the form g ( x ) g ( x ) d x \frac{g'(x)}{g(x)}\;\mathrm dx with g ( x ) = sin x + cos x g(x)=\sin x + \cos x .

Therefore g ( x ) g ( x ) d x = 1 g d g = log g ( x ) = log sin x + cos x \int \frac{g'(x)}{g(x)}\;\mathrm dx=\int\frac1g \;\mathrm dg=\log \lvert g(x) \rvert=\log \lvert \sin x + \cos x \rvert

So we have f ( t ) = log sin t + cos t log sin ( t ) + cos ( t ) = log sin t + cos t cos t sin t f(t)=\log \lvert \sin t + \cos t \rvert - \log \lvert \sin(-t) + \cos(-t) \rvert = \log \left\lvert \frac{\sin t + \cos t}{\cos t - \sin t} \right\rvert

Then using some trigonometric identities the functionand of the logarithm turns into

sin t + cos t cos t sin t = 1 + tan t 1 tan t \frac{\sin t + \cos t}{\cos t - \sin t} =\frac{1+\tan t}{1- \tan t}

Then notice that it is the logarithmic form of a r t a n h \mathrm{artanh} which finally transforms the result into f ( t ) = 2 a r t a n h ( tan t ) f(t)=2\;\mathrm{artanh}(\tan t) Finally use a calculator and round to 3 s.f. to get 1.23 \fbox{1.23}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...