3 cos 4 0 ∘ + 3 cos 8 0 ∘ + 3 cos 1 6 0 ∘ = 3 b 3 ( 3 a − b )
The above equation holds true for positive integers a and b . Find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
If z = e 9 2 π i then u = cos 4 0 ∘ = 2 1 ( z + z − 1 ) , v = cos 8 0 ∘ = 2 1 ( z 2 + z − 2 ) and w = cos 1 6 0 ∘ = 2 1 ( z 4 + z − 4 ) . Note that z is a zero of 0 = X 9 − 1 = ( X 3 − 1 ) ( X 6 + X 3 + 1 ) , so of X 6 + X 3 + 1 = 0 . Thus u + v + w u v + u w + v w u v w = 2 1 ( z + z − 1 + z 2 + z − 2 + z 4 + z − 4 ) = − 2 1 ( 1 + z 3 + z − 3 ) = 0 = − 2 1 ( u 2 + v 2 + w 2 ) = − 8 1 ( z 2 + 2 + z − 2 + z 4 + 2 + z − 2 + z + 2 + z − 1 ) = − 4 3 = 8 1 ( z 3 + z − 3 + z + z − 1 ) ( z 4 + z − 4 ) = 8 1 ( z 2 + z − 2 + z + z − 1 + z 4 + z − 4 + z 3 + z − 3 ) = 8 1 ( z 3 + z − 3 ) = − 8 1 so that u , v , w are the roots of the cubic polynomial 8 X 3 − 6 X + 1 = 0 .
If we write α = 3 u , β = 3 v and γ = 3 w then 8 X 9 − 6 X 3 + 1 = 8 ( X 3 − u ) ( X 3 − v ) ( X 3 − w ) = 8 ( X − α ) ( X − α ω ) ( X − α ω 2 ) ( X − β ) ( X − β ω ) ( X − β ω 2 ) ( X − γ ) ( X − γ ω ) ( X − γ ω 2 ) = F ( X ) F ( ω X ) F ( ω 2 X ) where F ( X ) = 2 ( X − α ) ( X − β ) ( X − γ ) ∈ R [ X ] and ω = z 3 is the principal cube root of unity. If we write F ( X ) = 2 X 3 − a X 2 + b X − c for real a , b , c , we deduce that 8 X 9 − 6 X 3 + 1 = 8 X 9 − ( a 3 − 6 a b + 1 2 c ) X 6 + ( b 3 − 3 a b c + 6 c 2 ) X 3 − c 3 and so that a 3 − 6 a b + 1 2 c = 0 b 3 − 3 a b c + 6 c 2 = − 6 c 3 = − 1 so that c = − 1 and hence a 3 − 6 a b = 1 2 b 3 + 3 a b = − 1 2 Thus b = 6 a a 3 − 1 2 and hence ( 6 a a 3 − 1 2 ) 3 + 3 a ( 6 a a 3 − 1 2 ) + 1 2 ( a 3 − 1 2 ) 3 + 1 0 8 a 3 ( a 3 − 1 2 ) + 2 5 9 2 a 3 ( a 3 + 2 4 ) 3 = 0 = 0 = 1 5 5 5 2 = 2 6 × 3 5 Since a is real we deduce that a 3 = 1 2 3 9 − 2 4 = 1 2 ( 3 9 − 2 ) , and hence ( 3 cos 4 0 ∘ + 3 cos 8 0 ∘ + 3 cos 1 6 0 ∘ ) 3 = ( α + β + γ ) 3 = 8 1 a 3 = 2 3 ( 3 9 − 2 ) making the answer 9 + 2 = 1 1 .