Triggy Radicals

Algebra Level 5

cos 4 0 3 + cos 8 0 3 + cos 16 0 3 = 3 ( a 3 b ) b 3 \sqrt[3]{\cos{40^\circ}}+\sqrt[3]{\cos{80^\circ}}+\sqrt[3]{\cos{160^\circ}}=\sqrt[3]{\dfrac{3\left(\sqrt[3]{a}-b\right)}b}

The above equation holds true for positive integers a a and b b . Find a + b a+b .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Sep 6, 2019

If z = e 2 π i 9 z = e^{\frac{2\pi i}{9}} then u = cos 4 0 = 1 2 ( z + z 1 ) u = \cos 40^\circ = \tfrac12(z+z^{-1}) , v = cos 8 0 = 1 2 ( z 2 + z 2 ) v = \cos80^\circ = \tfrac12(z^2 + z^{-2}) and w = cos 16 0 = 1 2 ( z 4 + z 4 ) w = \cos160^\circ = \tfrac12(z^4 + z^{-4}) . Note that z z is a zero of 0 = X 9 1 = ( X 3 1 ) ( X 6 + X 3 + 1 ) 0 = X^9-1 = (X^3-1)(X^6 + X^3 + 1) , so of X 6 + X 3 + 1 = 0 X^6 + X^3 + 1 = 0 . Thus u + v + w = 1 2 ( z + z 1 + z 2 + z 2 + z 4 + z 4 ) = 1 2 ( 1 + z 3 + z 3 ) = 0 u v + u w + v w = 1 2 ( u 2 + v 2 + w 2 ) = 1 8 ( z 2 + 2 + z 2 + z 4 + 2 + z 2 + z + 2 + z 1 ) = 3 4 u v w = 1 8 ( z 3 + z 3 + z + z 1 ) ( z 4 + z 4 ) = 1 8 ( z 2 + z 2 + z + z 1 + z 4 + z 4 + z 3 + z 3 ) = 1 8 ( z 3 + z 3 ) = 1 8 \begin{aligned} u+v+w & = \; \tfrac12\big(z + z^{-1} + z^2 + z^{-2} + z^4 + z^{-4}\big) \; = \; -\tfrac12\big(1 +z^3 + z^{-3}\big) \; = \; 0 \\ uv + uw + vw & = \; -\tfrac12(u^2 + v^2 + w^2) \; = \; -\tfrac18(z^2 + 2 + z^{-2} + z^4 +2 + z^{-2} + z + 2 + z^{-1}\big) \; = \; -\tfrac34 \\ uvw & = \; \tfrac18\big(z^3 + z^{-3} + z + z^{-1}\big)\big(z^4 + z^{-4}\big) \; = \; \tfrac18\big(z^2 + z^{-2} + z + z^{-1} + z^4 + z^{-4} + z^3 + z^{-3}\big) \; =\; \tfrac18(z^3 + z^{-3}\big) \; = \; -\tfrac18 \end{aligned} so that u , v , w u,v,w are the roots of the cubic polynomial 8 X 3 6 X + 1 = 0 8X^3 - 6X + 1 = 0 .

If we write α = u 3 \alpha = \sqrt[3]{u} , β = v 3 \beta = \sqrt[3]{v} and γ = w 3 \gamma = \sqrt[3]{w} then 8 X 9 6 X 3 + 1 = 8 ( X 3 u ) ( X 3 v ) ( X 3 w ) = 8 ( X α ) ( X α ω ) ( X α ω 2 ) ( X β ) ( X β ω ) ( X β ω 2 ) ( X γ ) ( X γ ω ) ( X γ ω 2 ) = F ( X ) F ( ω X ) F ( ω 2 X ) \begin{aligned} 8X^9 - 6X^3 + 1 & = \; 8(X^3 - u)(X^3 - v)(X^3 - w) \; = \; 8(X - \alpha)(X-\alpha\omega)(X-\alpha\omega^2)(X-\beta)(X-\beta\omega)(X-\beta\omega^2)(X-\gamma)(X-\gamma\omega)(X-\gamma\omega^2) \\ & = \; F(X)F(\omega X)F(\omega^2 X) \end{aligned} where F ( X ) = 2 ( X α ) ( X β ) ( X γ ) R [ X ] F(X) = 2(X-\alpha)(X-\beta)(X-\gamma) \in \mathbb{R}[X] and ω = z 3 \omega=z^3 is the principal cube root of unity. If we write F ( X ) = 2 X 3 a X 2 + b X c F(X) = 2X^3 - aX^2 + bX - c for real a , b , c a,b,c , we deduce that 8 X 9 6 X 3 + 1 = 8 X 9 ( a 3 6 a b + 12 c ) X 6 + ( b 3 3 a b c + 6 c 2 ) X 3 c 3 8X^9 - 6X^3 + 1 \; = \; 8X^9 - \big(a^3 - 6ab + 12c\big)X^6 + \big(b^3 - 3abc + 6c^2\big)X^3 - c^3 and so that a 3 6 a b + 12 c = 0 b 3 3 a b c + 6 c 2 = 6 c 3 = 1 a^3 - 6ab + 12c \; = \; 0 \hspace{1.5cm} b^3 - 3abc + 6c^2 \; = \; -6 \hspace{1.5cm} c^3 = -1 so that c = 1 c=-1 and hence a 3 6 a b = 12 b 3 + 3 a b = 12 a^3 - 6ab \; = \; 12 \hspace{2cm} b^3 + 3ab \; = \; -12 Thus b = a 3 12 6 a b = \dfrac{a^3 - 12}{6a} and hence ( a 3 12 6 a ) 3 + 3 a ( a 3 12 6 a ) + 12 = 0 ( a 3 12 ) 3 + 108 a 3 ( a 3 12 ) + 2592 a 3 = 0 ( a 3 + 24 ) 3 = 15552 = 2 6 × 3 5 \begin{aligned} \left(\dfrac{a^3 - 12}{6a}\right)^3 + 3a\left(\dfrac{a^3 - 12}{6a}\right) + 12 & = \; 0 \\ \big(a^3 - 12\big)^3 + 108a^3\big(a^3 - 12\big) + 2592a^3 & = \; 0 \\ \big(a^3 + 24\big)^3 & = \; 15552 \; = \; 2^6 \times 3^5 \end{aligned} Since a a is real we deduce that a 3 = 12 9 3 24 = 12 ( 9 3 2 ) a^3 = 12\sqrt[3]{9} - 24 = 12\big(\sqrt[3]{9} - 2\big) , and hence ( cos 4 0 3 + cos 8 0 3 + cos 16 0 3 ) 3 = ( α + β + γ ) 3 = 1 8 a 3 = 3 2 ( 9 3 2 ) \left(\sqrt[3]{\cos40^\circ} + \sqrt[3]{\cos80^\circ} + \sqrt[3]{\cos160^\circ}\right)^3 \; = \; (\alpha + \beta + \gamma)^3 \; = \; \tfrac18a^3 \; = \; \tfrac32\big(\sqrt[3]{9} - 2\big) making the answer 9 + 2 = 11 9+2=\boxed{11} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...