Can I use proportion to my advantage?

Geometry Level 2

sin 2 θ 5 = cos 2 θ 6 \large \frac { \sin ^{ 2 }{ \theta } }{ 5 } =\frac { \cos ^{ 2 }{ \theta } }{ 6 }

If θ \theta is a positive acute angle that satisfies the equation above, find sin θ \sin { \theta } .

Note: Give your answer to 3 decimal places.


The answer is 0.674.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Shivamani Patil
Jun 12, 2015

By ratio and proportion we know that

a b = c d = a + c b + d \frac { a }{ b } =\frac { c }{ d } =\frac { a+c }{ b+d }

Therefore,

sin 2 θ 5 = cos 2 θ 6 = sin 2 θ + cos 2 θ 11 \frac { \sin ^{ 2 }{ \theta } }{ 5 } =\frac { \cos ^{ 2 }{ \theta } }{ 6 } =\frac { \sin ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } }{ 11 }

sin 2 θ 5 = 1 11 \Rightarrow \frac { \sin ^{ 2 }{ \theta } }{ 5 } =\frac { 1 }{ 11 }

sin θ = ± 5 11 \Rightarrow \sin { \theta } =\pm \sqrt { \frac { 5 }{ 11 } }

As θ \theta is in first quadrant we have sin θ = 5 11 = 0.674 \sin { \theta } =\sqrt { \frac { 5 }{ 11 } } =0.674

Moderator note:

Oh nice use of Componendo and Dividendo ! I was thinking of converting tan 2 θ = 5 6 \tan^2 \theta = \frac56 in terms of sin θ \sin \theta by Pythagorean Identities .

Yeah really nice !

Log in to reply

thank you bro.

shivamani patil - 6 years ago

yeah.. i did it like that.. and then using the identities of Cos 2 theta

Nithin Nithu - 5 years, 12 months ago

Log in to reply

:).. nice job.

Raghav Gupta - 5 years, 11 months ago

tnx bro.. but ur solution was more interesting ..

Nithin Nithu - 5 years, 11 months ago

or you can go as simple as that

s i n 2 θ 5 \frac{sin^2 \theta}{5} = c o s 2 θ 6 \frac{cos^2 \theta}{6}

\Rightarrow 6 s i n 2 θ sin^2 \theta = 5 c o s 2 θ cos^2 \theta

\Rightarrow 6 s i n 2 θ sin^2 \theta = 5 ( 1 - s i n 2 θ sin^2 \theta )

\Rightarrow 6 s i n 2 θ sin^2 \theta = 5 - 5 s i n 2 θ sin^2 \theta

\Rightarrow 6 s i n 2 θ sin^2 \theta + 5 s i n 2 θ sin^2 \theta = 5

\Rightarrow 11 s i n 2 θ sin^2 \theta = 5

\Rightarrow s i n 2 θ sin^2\theta = 5 11 \frac{5}{11}

As θ \theta is in first quadrant we have sin θ \theta = + 5 11 \sqrt{\frac{5}{11}}

sin θ \theta = 5 11 \frac{\sqrt{5}}{\sqrt{11}} = 2.236 3.316 \frac{2.236}{3.316} = 0.674

Raghav Gupta - 5 years, 11 months ago

Did anyone use a calculator for the last step?

Shubhrajit Sadhukhan - 4 months, 2 weeks ago

sin 2 θ 5 = cos 2 θ 6 \large \because \ \ \ \frac{ \sin^{2}{\theta}}{5} \ = \ \frac{ \cos^{2}{\theta}}{6} 6 5 = cos 2 θ sin 2 θ \large \therefore \ \ \ \frac{6}{5} \ = \ \frac{\cos^{2}{\theta}}{\sin^{2}{\theta}} And by adding 1 1 (which is equal to 5 5 \large \frac{5}{5} and also sin 2 θ sin 2 θ \large \frac{ \sin^{2}{\theta}}{ \sin^{2}{\theta}} ) to both sides , we get : 5 + 6 5 = cos 2 θ + sin 2 θ sin 2 θ \large \frac{5+6}{5} \ = \ \frac{\cos^{2}{\theta} + \sin^{2}{\theta}}{\sin^{2}{\theta}} 11 5 = 1 sin 2 θ \large \therefore \ \ \ \frac{11}{5} \ = \ \frac{1}{\sin^{2}{\theta}} sin 2 θ = 5 11 \large \therefore \ \ \ \sin^{2}{\theta} \ = \ \frac{5}{11} sin θ = ± 5 11 = ± 5 11 \large \therefore \ \ \ \sin{\theta} \ = \ \pm \sqrt{\frac{5}{11}} \ = \ \pm \frac{\sqrt{5}}{\sqrt{11}} But as θ \large \theta is a positive acute angle which lies in the first quadrant , therefore sin θ \large \sin{\theta} must be positive too . sin θ = 5 11 0.674 \large \therefore \ \ \ \sin{\theta} \ = \ \frac{\sqrt{5}}{\sqrt{11}} \ \approx \ \boxed{0.674}

Moderator note:

This is correct. Surprisingly adding 1 to both sides of the equation makes it so much simpler.

Actually your answer should be 0.674. You by mistake have put your answer as 0.647

Pressure, eh?

Raghav Gupta - 5 years, 11 months ago

Log in to reply

Ah, you are right ^_^ . Thank you for your careful notice :) .

Mohamed Ahmed Abd El-Fattah - 5 years, 11 months ago

Log in to reply

no problem. it happens a lot.. :)

Raghav Gupta - 5 years, 11 months ago
Harshit Singhania
Jun 14, 2015

( sin θ ) 2 5 = ( cos θ ) 2 6 6 ( sin θ ) 2 = 5 ( cos θ ) 2 \frac {(\sin\theta)^{2}}{5} = \frac {(\cos\theta)^{2}}{6} 》》》6 (\sin\theta)^{2}=5 (\cos\theta)^{2} Add ( 5 sin θ ) 2 (5\sin\theta)^{2} on both sides so 11 ( sin θ ) 2 = 5 ( ( cos θ ) 2 + ( sin θ ) 2 ) 11 ( sin θ ) 2 = 5 ( sin θ ) 2 = 5 11 sin θ = 5 11 11 (\sin\theta)^{2} = 5 ((\cos\theta)^{2} + (\sin\theta)^{2})》》》 11 (\sin\theta)^{2}= 5 》》》 (\sin\theta)^{2} = \frac{5}{11}》》》 \sin\theta= \sqrt {\frac {5}{11}}

Moderator note:

This is correct too. For clarity, you should explain why sin θ = 5 11 \sin \theta =-\sqrt{\frac5{11}} is not allowed.

It isn't allowed because theta is a acute angle and the sine of an acute angle cannot be negative

Harshit Singhania - 5 years, 12 months ago
Stewart Feasby
Jun 17, 2015

I thought of this differently to others apparently. Here's my working: sin 2 θ 5 = cos 2 θ 6 sin 2 θ cos 2 θ = 5 6 tan 2 θ = 5 6 tan θ = 5 6 θ 0.7399... sin θ = 0.6742... A n s w e r = 0.674 ( t o 3 d p ) \frac { { \sin ^{ 2 }{ \theta } } }{ 5 } =\frac { { \cos ^{ 2 }{ \theta } } }{ 6 } \\ \frac { { \sin ^{ 2 }{ \theta } } }{ \cos ^{ 2 }{ \theta } } =\frac { { 5 } }{ 6 } \\ \tan ^{ 2 }{ \theta } =\frac { { 5 } }{ 6 } \\ \tan \theta =\sqrt { \frac { { 5 } }{ 6 } } \\ \theta \approx 0.7399...\\ \sin \theta =0.6742...\\ Answer=\boxed { 0.674 } \quad (to\quad 3dp) So, using just the identity that sine divided by cosine = tangent.

Ahmed Hazem
Jun 16, 2015

cos^2(x)+sin^2(x)=1, cos^2(x)=1-sin^2(x) , and the rest is simple :)

Suppose, Sin^2@/5=Cos^2@/6=k Then,we got sin^2@=5k and cos^2@=6K Then ,we got 2 equations 1. Sin^2@-5k=0 2.Cos^2@-6k=0 Then we replace the value of sin^2@ to equation no. 2 Then, 1-sin^2@=6K [cos^2@ = 1-sin^2@] 》1-5k=6k 》11k=1 》k=1/11 We replace the value to equation no .1 Sin^2@= 5/11 》Sin@=(5/11)^(1/2) 》Sin@=0.674

Amed Lolo
Dec 4, 2016

Cos^2(theta)=1-sin^2(theta) . Put sin^2(th)=y so 5-5y=6y 11y=5 so y=5÷11 so sin(theta)=√5÷√11=.674

Raveendra Magapu
Mar 22, 2016

On applying square root on both sides, we get sin θ 5 = cos θ 6 tan θ = 5 6 \large \frac { \sin { \theta } }{\sqrt{ 5} } =\frac { \cos { \theta } }{ \sqrt{6 }} \\ \Rightarrow \tan{\theta} = \frac {\sqrt{5}}{ \sqrt{6}} By applying Pythagorean Identities sin θ = 5 11 = 0.674 \sin { \theta } =\sqrt { \frac { 5 }{ 11 } } =0.674 ( θ \theta is acute angle so we have taken the positive value for sin θ \sin{\theta} )

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...