Trigno-sides

Geometry Level 4

If points P = ( cos x , cos 2 x ) , Q = ( cot x , cot 2 x ) , R = ( sin x , sin 2 x ) P=(\cos x, \cos^2 x),\,\,\, Q=(\cot x, \cot^2 x),\,\,\, R=(\sin x, \sin^2 x) and S = ( tan x , tan 2 x ) S =(\tan x, \tan^2 x) are the vertices of a trapezoid. What is sin ( 2 x ) \sin(2x) ?

Note:

  • 13 5 < x < 18 0 135^\circ < x < 180^\circ
3 3 6 3\sqrt{3}-6 3 4 -\frac{3}{4} 3 2 5 3\sqrt{2}-5 1 3 1-\sqrt{3} 2 2 2 2-2\sqrt{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Moehring
Aug 3, 2018

For 13 5 < x < 18 0 135^\circ < x < 180^\circ , we have cot x < 1 < cos x , tan x < 0 < sin x \cot x < -1 < \cos x, \tan x < 0 < \sin x and since all the points lie on the graph of y = x 2 , y=x^2, which is a convex function, the line Q R \overline{QR} must be parallel with the line P S . \overline{PS}. That is, the slopes must equal: cot x + sin x = cot 2 x sin 2 x cot x sin x = tan 2 x cos 2 x tan x cos x = tan x + cos x . \cot x + \sin x = \frac{\cot^2x - \sin^2x}{\cot x - \sin x} = \frac{\tan^2x - \cos^2x}{\tan x - \cos x} = \tan x + \cos x. Multiplying the equation by sin x cos x \sin x \cos x to clear denominators and write everything in terms of sines and cosines, we have c o s 2 x + sin 2 x cos x = sin 2 x + sin x cos 2 x ( cos x + sin x ) ( cos x sin x ) = cos 2 x sin 2 x = sin x cos 2 x sin 2 x cos x = sin x cos x ( cos x sin x ) cos x + sin x = sin x cos x = 1 2 sin ( 2 x ) cos^2x + \sin^2x\cos x = \sin^2x + \sin x\cos^2x \\ \implies (\cos x + \sin x)(\cos x - \sin x) = \cos^2x-\sin^2x = \sin x\cos^2x - \sin^2x\cos x = \sin x\cos x(\cos x - \sin x) \\ \implies \cos x + \sin x = \sin x\cos x = \frac{1}{2}\sin(2x) where the last implication is due to the fact cos x sin x \cos x \neq \sin x for the domain given in the problem. Then by squaring both sides, 1 + sin ( 2 x ) = cos 2 x + 2 sin x cos x + sin 2 x = 1 4 sin 2 ( 2 x ) sin 2 ( 2 x ) 4 sin ( 2 x ) 4 = 0 sin ( 2 x ) = 2 ± 2 2 1 + \sin(2x) = \cos^2x + 2\sin x\cos x + \sin^2x = \frac{1}{4}\sin^2(2x) \\ \implies \sin^2(2x) - 4\sin(2x) - 4 = 0 \\ \implies \sin(2x) = 2 \pm 2\sqrt{2} Now just note that 27 0 < 2 x < 36 0 270^\circ < 2x < 360^\circ implies sin ( 2 x ) < 0 \sin(2x) < 0 , so sin ( 2 x ) = 2 2 2 \sin(2x) = \boxed{2 - 2\sqrt{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...