Trigno+geometry

Geometry Level 4

{ 3 sin A + 4 cos B = 6 3 cos A + 4 sin B = 1 \large \begin{cases}{3\sin A + 4\cos B = 6} \\ {3\cos A + 4\sin B = 1}\end{cases}

In a triangle A B C ABC , we are given that two angles A , B A,B satisfy the equation above, find the measure of the remaining angle, C C (in degrees).

90 150 60 30

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 24, 2015

{ 3 sin A + 4 cos B = 6 3 cos A + 4 sin B = 1 { ( 3 sin A + 4 cos B ) 2 = 6 2 ( 3 cos A + 4 sin B ) 2 = 1 2 { 9 sin 2 A + 24 sin A cos B + 16 cos 2 B = 36 9 cos 2 A + 24 sin B cos A + 16 sin 2 B = 1 9 + 24 ( sin A cos B + sin B cos A ) + 16 = 37 24 ( sin A cos B + sin B cos A ) = 12 sin ( A + B ) = 1 2 A + B = 3 0 or 15 0 \begin{cases} 3\sin{A} +4\cos{B} = 6 \\ 3\cos{A} +4\sin{B} = 1 \end{cases} \\ \Rightarrow \begin{cases} (3\sin{A} +4\cos{B})^2 = 6^2 \\ (3\cos{A} +4\sin{B})^2 = 1^2 \end{cases} \\ \Rightarrow \begin{cases} 9\sin^2{A} +24\sin{A}\cos{B} + 16 \cos^2{B} = 36 \\ 9\cos^2{A} +24\sin{B}\cos{A} + 16\sin^2{B} = 1 \end{cases} \\ \Rightarrow 9 + 24(\sin{A}\cos{B} + \sin{B}\cos{A}) + 16 = 37 \\ \quad \space 24(\sin{A}\cos{B} + \sin{B}\cos{A}) = 12 \\ \Rightarrow \sin{(A+B)} = \frac{1}{2} \\ \Rightarrow A+B = 30^\circ \text{ or } 150^\circ

If A + B = 3 0 A+B = 30^\circ , from 3 cos A + 4 sin B = 1 3\cos{A} +4\sin{B} = 1 , we have:

sin B = 1 3 cos A 4 < 1 3 × 3 2 4 < 0 B > 18 0 Rejected \sin{B} = \dfrac {1 - 3\cos{A}}{4} < \dfrac {1 - 3\times \frac{\sqrt{3}}{2}}{4} < 0 \quad \Rightarrow B > 180^\circ \text{ Rejected}

A + B = 15 0 C = 18 0 15 0 = 3 0 \Rightarrow A+B = 150^\circ \quad \Rightarrow C = 180^\circ - 150^\circ = \boxed{30^\circ}

Moderator note:

Great job with rejecting A + B = 3 0 A + B = 30 ^ \circ .

In a similar way, could we use the condition of 3 sin A + 4 cos B = 6 3 \sin A + 4 \cos B = 6 to reject the 3 0 30 ^ \circ case?

Challenge Master : If A+B =30 , then A will be less than 30 (in degrees). Thus, sinA will be less than 1/2. This would imply that cosB will be greater than 1 , which is not possible. Hence A+B =150 is correct while A+B =30 is contradictory.

Abhijeet Verma - 6 years ago

i didn't understand the last step that you did sir ? how and why did you reject 30

avn bha - 6 years ago

Log in to reply

Sorry, it should be B > 18 0 B > 180^\circ , because sin B < 0 \sin{B} < 0 .

Chew-Seong Cheong - 6 years ago

Do you mean the condition of 3 cos A + 4 sin B = 6 3\cos{A} + 4\sin{B} = 6 ?

Chew-Seong Cheong - 6 years ago

if A+B= 30, ------>A= 30 - B

3 sin (30-B)+4 cos B =6,

After the calculation, we get,

5.5 cos B - (1.732/2)sin B = 6 -------> for this condition to be satisfied sin B should be a negative value and hence B should be greater than 180.......which is contradictory to the properties of Triangle.

Hence A + B = 30 is ruled out.

Anil Krishna - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...