Trignometric limit

Calculus Level 3

lim n r = 1 2 n 1 1 tan 2 ( r π 2 n ) 4 n \displaystyle \lim _{ n\rightarrow \infty }{ \frac { \displaystyle \sum _{ r=1 }^{ { 2 }^{ n-1 }-1 }{ \tan ^{ 2 }{ \left (\frac { r\pi }{ { 2 }^{ n } } \right ) } } }{ { 4 }^{ n } } }

For positive integer n n , the limit evaluates to a b \dfrac a b for coprime positive integers a , b a,b . What is the value of a + b a+b ?


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ronak Agarwal
Apr 14, 2015

The sum in the numerator evalutes to :

= ( 2 n 1 ) ( 2 n 1 1 ) 3 = \dfrac{(2^{n}-1)(2^{n-1}-1)}{3}

Proof :

We will be forming a recurrence relation and solving it :

S n = r = 1 2 n 1 1 tan 2 ( r π 2 n ) \displaystyle {S}_{n} = \displaystyle \sum_{r=1}^{{2}^{n-1}-1}{\tan^{2}{(\frac {r\pi}{{2}^{n}})}}

It can also be written as :

S n = r = 1 2 n 1 1 cot 2 ( r π 2 n ) \displaystyle {S}_{n} = \displaystyle \sum_{r=1}^{{2}^{n-1}-1}{\cot^{2}{(\frac {r\pi}{{2}^{n}})}} (think why)

Adding these two forms we have :

2 S n = r = 1 2 n 1 1 tan 2 r π 2 n + cot 2 r π 2 n \displaystyle 2{S}_{n} = \sum _{ r=1 }^{ { 2 }^{ n-1 }-1 }{ \tan ^{ 2 }{ \frac { r\pi }{ { 2 }^{ n } } } +\cot ^{ 2 }{ \frac { r\pi }{ { 2 }^{ n } } } }

Notice the identity tan 2 θ + cot 2 θ = 4 cot 2 2 θ + 2 \tan ^{ 2 }{ \theta } +\cot ^{ 2 }{ \theta } =4\cot ^{ 2 }{ 2\theta } +2

Using this we have :

2 S n = r = 1 2 n 1 1 4 cot 2 r π 2 n 1 + 2 \displaystyle 2{S}_{n} = \sum _{ r=1 }^{ { 2 }^{ n-1 }-1 }{ 4\cot ^{ 2 }{ \frac { r\pi }{ { 2 }^{ n-1 } } } +2 }

S n = r = 1 2 n 1 1 ( 2 cot 2 r π 2 n 1 + 1 ) \displaystyle \Rightarrow {S}_{n} = \sum _{ r=1 }^{ { 2 }^{ n-1 }-1 }{ (2\cot ^{ 2 }{ \frac { r\pi }{ { 2 }^{ n-1 } } } +1 )}

Now notice that cot 2 r π 2 n = cot 2 ( 2 n r ) π 2 n \cot ^{ 2 }{ \frac { r\pi }{ { 2 }^{ n } } } =\cot ^{ 2 }{ \frac { ({ 2 }^{ n }-r)\pi }{ { 2 }^{ n } } }

Using this identity we can rewrite our summation as :

S n = 4 r = 1 2 n 2 1 cot 2 r π 2 n 1 + ( 2 n 1 1 ) \displaystyle {S}_{n} = 4\sum _{ r=1 }^{ { 2 }^{ n-2 }-1 }{ \cot ^{ 2 }{ \frac { r\pi }{ { 2 }^{ n-1 } } } } +({ 2 }^{ n-1 }-1)

We can also write it as :

S n = 4 r = 1 2 n 2 1 tan 2 r π 2 n 1 + ( 2 n 1 1 ) \displaystyle {S}_{n} = 4\sum _{ r=1 }^{ { 2 }^{ n-2 }-1 }{ \tan ^{ 2 }{ \frac { r\pi }{ { 2 }^{ n-1 } } } } +({ 2 }^{ n-1 }-1)

Finally we have the recurrence relation as :

S r = 4 S r 1 + ( 2 r 1 1 ) { S }_{ r }=4{ S }_{ r-1 }+({ 2 }^{ r-1 }-1)

To solve this recurrence relation I will use a small trick :

Let ( 4 r ) T r = S r (4^{r}){T}_{r} = {S}_{r}

Our recurrence relation becomes :

T r T r 1 = 1 2 r + 1 1 4 r { T }_{ r }-{ T }_{ r-1 }=\frac { 1 }{ { 2 }^{ r+1 } } -\frac { 1 }{ { 4 }^{ r } }

Summing both sides from r = 1 r=1 to r = n r=n , we have :

T n T 1 = 1 2 ( 1 1 2 n ) 1 3 ( 1 1 4 n ) { T }_{ n }-{ T }_{ 1 }=\frac { 1 }{ 2 } (1-\frac { 1 }{ { 2 }^{ n } } )-\frac { 1 }{ 3 } (1-\frac { 1 }{ { 4 }^{ n } } )

Observe that T 1 = 0 {T}_{1}=0

We have :

T n = 1 2 ( 1 1 2 n ) 1 3 ( 1 1 4 n ) { T }_{ n }=\frac { 1 }{ 2 } (1-\frac { 1 }{ { 2 }^{ n } } )-\frac { 1 }{ 3 } (1-\frac { 1 }{ { 4 }^{ n } } )

Hence we have :

S n = ( 2 n 1 ) ( 2 n 1 1 ) 3 { S }_{ n }=\frac { ({ 2 }^{ n }-1)({ 2 }^{ n-1 }-1) }{ 3 }

I saw your photo in the newspaper . Well done

Aman Real - 6 years, 1 month ago

If this is original one , then it is an appreciable observation .

Gaurav Jain - 5 years, 11 months ago

Would you please present the derivation for arriving the closed form solution of the sum? Thanks for this splendid problem!

Prabir Chaudhuri - 6 years, 2 months ago

Cool Problem .... Does this is also original , like as your rest others ?

I was Thinking totally in different way ... I was thinking of 2^(n) root of unity and then trying..... but fails ..!

Karan Shekhawat - 6 years, 2 months ago

Notable thinking procedure

Supratim Santra - 3 years, 1 month ago

Wow! I did it in a totally different way by assuming t a n ( x ) x tan(x) \approx x . I don't know how I got up with the same answer - 7 7 .

Kartik Sharma - 6 years, 1 month ago

Log in to reply

How's the problem.

Ronak Agarwal - 6 years, 1 month ago

Log in to reply

The problem is very elegant and solution even better. BTW, if you are looking for a challenge, then must check out this and can you help me here , please

Kartik Sharma - 6 years, 1 month ago
Don Weingarten
Feb 2, 2019

The limit reaches a value of 3/4, therefore the answer is 3+4=7.

Not a solution.

Maxence Seymat - 2 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...