Trigonometry - 2

Geometry Level 3

What is the value of

( 1 + sin π 8 ) ( 1 + sin 5 π 8 ) ( 1 + sin 9 π 8 ) ( 1 + sin 13 π 8 ) ? \left(1+\sin\frac{\pi}{8}\right)\left(1+\sin\frac{5\pi}{8}\right)\left(1+\sin\frac{9\pi}{8}\right)\left(1+\sin\frac{13\pi}{8}\right)?


The answer is 0.125.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Christopher Boo
Oct 25, 2014

( 1 + sin π 8 ) ( 1 + sin 5 π 8 ) ( 1 + sin 9 π 8 ) ( 1 + sin 13 π 8 ) \displaystyle (1+\sin{\frac{\pi}{8}})(1+\sin{\frac{5 \pi}{8}})(1+\sin{\frac{9 \pi}{8}})(1+\sin{\frac{13 \pi}{8}})

= ( 1 + sin π 8 ) ( 1 + sin 5 π 8 ) ( 1 sin π 8 ) ( 1 sin 5 π 8 ) \displaystyle =(1+\sin{\frac{\pi}{8}})(1+\sin{\frac{5 \pi}{8}})(1-\sin{\frac{\pi}{8}})(1-\sin{\frac{5 \pi}{8}})

= ( 1 sin 2 π 8 ) ( 1 sin 2 5 π 8 ) \displaystyle =(1-\sin^2\frac{\pi}{8})(1-\sin^2\frac{5 \pi}{8})

= ( cos 2 π 8 ) ( cos 2 5 π 8 ) \displaystyle =(\cos^2\frac{\pi}{8})( \cos^2\frac{5 \pi}{8})

= [ 1 2 ( cos 3 π 4 + cos π 2 ) ] 2 \displaystyle =\big[\frac{1}{2} (\cos \frac{3 \pi}{4} + \cos \frac{\pi}{2})\big]^2

= 0.125 =0.125

same here...broda...

Rutvik Paikine - 6 years, 7 months ago
Shaun Loong
Aug 4, 2014

We know that sin π 4 = cos π 4 = 1 2 0.70711 \sin\frac{\pi}{4}=\cos\frac{\pi}{4}=\frac{1}{\sqrt{2}}\approx0.70711 ​. Hence using double angle formula gives cos π 4 = 2 cos 2 π 8 1 = 1 2 cos 2 π 8 = 2 + 2 4 cos π 8 0.92388 \cos\frac{\pi}{4}=2\cos^{2}\frac{\pi}{8}-1=\frac{1}{\sqrt{2}}\Rightarrow \cos^{2}\frac{\pi}{8}=\frac{2+\sqrt{2}}{4}\Rightarrow\cos\frac{\pi}{8}\approx0.92388 Since sin 2 θ + cos 2 θ = 1 \sin^{2}\theta+\cos^{2}\theta=1 , therefore we have sin 2 π 8 = 2 2 4 sin π 8 = 2 2 2 0.38268 \sin^{2}\frac{\pi}{8}=\frac{2-\sqrt{2}}{4}\Rightarrow \sin\frac{\pi}{8}=\frac{\sqrt{2-\sqrt{2}}}{2}\approx0.38268 Using the formula sin ( α ± β ) = sin α cos β ± cos α sin β \sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta , we can obtain { sin 5 π 8 0.92388 sin 9 π 8 0.38268 sin 13 π 8 0.92388 \left\{\begin{matrix} \sin\frac{5\pi}{8}\approx0.92388\\ \sin\frac{9\pi}{8}\approx-0.38268 \\ \sin\frac{13\pi}{8}\approx-0.92388 \end{matrix}\right. This gives our desired answer to be 0.125 \boxed{0.125} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...