What is the value of
( 1 + sin 8 π ) ( 1 + sin 8 5 π ) ( 1 + sin 8 9 π ) ( 1 + sin 8 1 3 π ) ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
same here...broda...
We know that sin 4 π = cos 4 π = 2 1 ≈ 0 . 7 0 7 1 1 . Hence using double angle formula gives cos 4 π = 2 cos 2 8 π − 1 = 2 1 ⇒ cos 2 8 π = 4 2 + 2 ⇒ cos 8 π ≈ 0 . 9 2 3 8 8 Since sin 2 θ + cos 2 θ = 1 , therefore we have sin 2 8 π = 4 2 − 2 ⇒ sin 8 π = 2 2 − 2 ≈ 0 . 3 8 2 6 8 Using the formula sin ( α ± β ) = sin α cos β ± cos α sin β , we can obtain ⎩ ⎨ ⎧ sin 8 5 π ≈ 0 . 9 2 3 8 8 sin 8 9 π ≈ − 0 . 3 8 2 6 8 sin 8 1 3 π ≈ − 0 . 9 2 3 8 8 This gives our desired answer to be 0 . 1 2 5 .
Problem Loading...
Note Loading...
Set Loading...
( 1 + sin 8 π ) ( 1 + sin 8 5 π ) ( 1 + sin 8 9 π ) ( 1 + sin 8 1 3 π )
= ( 1 + sin 8 π ) ( 1 + sin 8 5 π ) ( 1 − sin 8 π ) ( 1 − sin 8 5 π )
= ( 1 − sin 2 8 π ) ( 1 − sin 2 8 5 π )
= ( cos 2 8 π ) ( cos 2 8 5 π )
= [ 2 1 ( cos 4 3 π + cos 2 π ) ] 2
= 0 . 1 2 5