Trignometry - 4

Geometry Level 3

{ sin ( x ) cos ( y ) = 1 4 3 tan ( x ) = 4 tan ( y ) \begin{cases} { \sin(x) \cos(y) = \dfrac{1}{4} } \\ { 3 \tan(x) = 4 \tan(y)} \end{cases}

If x , y x,y satisfy the system of equations above, what is the value of 10000 sin ( x + y ) \lfloor 10000\sin(x+y) \rfloor ?


The answer is 4375.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Samarth Sangam
Aug 28, 2014

sin x cos y = 1 4 3 tan x = 4 tan y c a n b e r e w r i t t e n a s 3 sin x cos x = 4 sin y cos y 3 sin x cos y = 4 sin y cos x b u t sin x cos y = 1 4 1 t h e r e f o r e 3 4 = 4 sin y cos x sin y cos x = 3 16 2 n o w sin ( x + y ) = s i n x c o s y + s i n y c o s x b u t f r o m e q u a t i o n 1 a n d 2 = 1 4 + 3 16 = 7 16 = A t h e r e f o r e [ 10000 A ] = [ 700000 / 16 ] = 4375 \sin { x\cos { y } } =\frac { 1 }{ 4 } \\ 3\tan { x } =4\tan { y } can\quad be\quad rewritten\quad as\\ 3\frac { \sin { x } }{ \cos { x } } =4\frac { \sin { y } }{ \cos { y } } \\ 3\sin { x } \cos { y } =4\sin { y } \cos { x } \\ but\quad \sin { x\cos { y } } =\frac { 1 }{ 4 } \rightarrow 1\\ therefore\quad \frac { 3 }{ 4 } =4\sin { y } \cos { x } \\ \sin { y } \cos { x } =\frac { 3 }{ 16 } \rightarrow 2\\ now\quad \sin { (x+y) } =sinxcosy+sinycosx\\ but\quad from\quad equation\quad 1\quad and\quad 2\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\frac { 1 }{ 4 } +\frac { 3 }{ 16 } \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\frac { 7 }{ 16 } =A\\ therefore\quad \left[ 10000A \right] =\left[ 700000/16 \right] =4375

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...