3 sin 2 θ + 7 cos θ sin 2 θ + 9 1 cos 2 θ sin 3 θ is expressed as a polynomial in terms of sin θ . Then the product of the numerical value of the greatest coefficient of the polynomial and the highest degree of polynomial is equal to?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
This question has so less solvers and such a high level as nobody wanted to expand the hell-of-a-big thing!!
Problem is simple but both coefficients were multiplied wrongly instead of coefficient and highest degree of x
You really should reword your problem statement to "the absolute value of the greatest coefficient value" or similar.
solving and converting all the cos in sin, we get 364(sin(x))^5-651(sin(x))^3+3(sin(x))^2+287sin(x) highest numeric value=651, highest coefficient=5 their product=3255
somebody pls convert this in LATEX, i dont know how to do that!! thnks
We can straight away see that last terms would give highest degree as 5. It will also be included in the term with biggest coefficient.
So simplifying last terms first,
N
o
t
e
:
C
o
s
2
(
θ
)
=
1
−
S
i
n
2
(
θ
)
,
.
.
.
.
.
(
1
)
.
.
.
.
.
.
a
n
d
.
.
.
.
.
.
.
S
i
n
(
3
θ
)
=
3
∗
S
i
n
(
θ
)
−
4
∗
S
i
n
3
(
θ
)
.
.
.
.
.
.
(
2
)
S
i
n
(
2
θ
)
=
2
∗
S
i
n
(
θ
)
∗
C
o
s
(
θ
)
.
.
.
.
.
.
.
(
3
)
C
o
n
s
i
d
e
r
i
n
g
o
n
l
y
u
s
e
f
u
l
t
e
r
m
s
C
o
s
2
(
θ
)
∗
S
i
n
(
3
θ
)
=
3
∗
S
i
n
(
θ
)
−
4
∗
S
i
n
3
(
θ
)
−
S
i
n
2
(
θ
)
∗
3
∗
S
i
n
(
θ
)
+
S
i
n
2
(
θ
)
∗
4
∗
S
i
n
3
(
θ
)
=
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
−
(
4
+
3
)
∗
S
i
n
3
(
θ
)
+
.
.
.
.
.
.
.
.
.
.
.
.
.
S
o
−
9
1
∗
7
∗
S
i
n
3
(
θ
)
=
−
6
3
7
∗
S
i
n
3
(
θ
)
,
b
u
t
t
h
e
r
e
i
s
S
i
n
3
(
θ
)
i
n
t
h
e
s
e
c
o
n
d
t
e
r
m
a
l
s
o
.
B
y
(
1
)
a
n
d
(
3
)
7
∗
C
o
s
(
θ
)
∗
S
i
n
(
2
θ
)
=
1
4
∗
S
i
n
(
θ
)
∗
(
1
−
S
i
n
2
(
θ
)
)
=
.
.
.
.
.
.
.
.
.
.
.
.
.
−
1
4
∗
S
i
n
3
(
θ
)
.
∴
−
6
3
7
−
1
4
=
−
6
5
1
o
f
S
i
n
3
(
θ
)
a
n
d
5
t
h
d
e
g
r
e
e
.
6
5
1
∗
5
=
3
2
5
5
.
In the last correct try I forgot the "5", while first two wrong ones I did not !
Problem Loading...
Note Loading...
Set Loading...
3 sin 2 θ + 7 cos θ sin 2 θ + 9 1 cos 2 θ sin 3 θ
= 3 sin 2 θ + 1 4 sin θ cos 2 θ + 9 1 ( 1 − sin 2 θ ) ( sin θ cos 2 θ + sin 2 θ cos θ )
= 3 sin 2 θ + 1 4 sin θ ( 1 − sin 2 θ ) + 9 1 [ ( 1 − sin 2 θ ) ( sin θ ( 1 − 2 sin 2 θ ) + 2 sin θ cos 2 θ ]
= 3 sin 2 θ + 1 4 sin θ − 1 4 sin 3 θ + 9 1 [ ( 1 − sin 2 θ ) ( sin θ ( 1 − 2 sin 2 θ ) + 2 sin θ cos 2 θ ]
= 1 4 sin θ + 3 sin 2 θ − 1 4 sin 3 θ + 9 1 [ ( 1 − sin 2 θ ) ( sin θ − 2 sin 3 θ + 2 sin θ ( 1 − sin 2 θ ) ]
= 1 4 sin θ + 3 sin 2 θ − 1 4 sin 3 θ + 9 1 [ ( 1 − sin 2 θ ) ( 3 sin θ − 4 sin 3 θ ) ]
= 1 4 sin θ + 3 sin 2 θ − 1 4 sin 3 θ + 9 1 ( 3 sin θ − 7 sin 3 θ + 4 sin 5 θ )
= 1 4 sin θ + 3 sin 2 θ − 1 4 sin 3 θ + 2 7 3 sin θ − 6 3 7 sin 3 θ + 3 6 4 sin 5 θ
= 2 8 7 sin θ + 3 sin 2 θ − 6 5 1 sin 3 θ + 3 6 4 sin 5 θ
The required answer = 6 5 1 × 5 = 3 2 5 5