Trignometry - 7

Geometry Level 4

3 sin 2 θ + 7 cos θ sin 2 θ + 91 cos 2 θ sin 3 θ 3 \sin^2\theta + 7 \cos\theta \sin2\theta + 91\cos^2\theta \sin3\theta is expressed as a polynomial in terms of sin θ \sin\theta . Then the product of the numerical value of the greatest coefficient of the polynomial and the highest degree of polynomial is equal to?


The answer is 3255.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 14, 2014

3 sin 2 θ + 7 cos θ sin 2 θ + 91 cos 2 θ sin 3 θ 3\sin^2{\theta}+7\cos{\theta}\sin{2\theta}+91\cos^2{\theta} \sin{3\theta}

= 3 sin 2 θ + 14 sin θ cos 2 θ + 91 ( 1 sin 2 θ ) ( sin θ cos 2 θ + sin 2 θ cos θ ) =3\sin^2{\theta}+14\sin {\theta}\cos^2 {\theta}+91 (1 - \sin ^2 {\theta} )( \sin {\theta}\cos {2\theta} + \sin {2\theta}\cos {\theta})

= 3 sin 2 θ + 14 sin θ ( 1 sin 2 θ ) + 91 [ ( 1 sin 2 θ ) ( sin θ ( 1 2 sin 2 θ ) + 2 sin θ cos 2 θ ] =3\sin^2{\theta}+14\sin {\theta} (1 - \sin^2 {\theta})+91 [(1 - \sin ^2 {\theta} )( \sin {\theta} (1 - 2\sin^2 {\theta}) + 2\sin {\theta}\cos^2 {\theta}]

= 3 sin 2 θ + 14 sin θ 14 sin 3 θ + 91 [ ( 1 sin 2 θ ) ( sin θ ( 1 2 sin 2 θ ) + 2 sin θ cos 2 θ ] =3\sin^2{\theta}+14\sin {\theta} - 14 \sin^3 {\theta}+91 [(1 - \sin ^2 {\theta} )( \sin {\theta} (1 - 2\sin^2 {\theta}) + 2\sin {\theta}\cos^2 {\theta}]

= 14 sin θ + 3 sin 2 θ 14 sin 3 θ + 91 [ ( 1 sin 2 θ ) ( sin θ 2 sin 3 θ + 2 sin θ ( 1 sin 2 θ ) ] =14\sin {\theta} + 3 \sin^2 {\theta} - 14 \sin^3 {\theta}+91 [(1 - \sin ^2 {\theta} )( \sin {\theta} - 2\sin^3 {\theta} + 2\sin {\theta} ( 1 - \sin ^2 {\theta})]

= 14 sin θ + 3 sin 2 θ 14 sin 3 θ + 91 [ ( 1 sin 2 θ ) ( 3 sin θ 4 sin 3 θ ) ] = 14\sin {\theta} + 3 \sin^2 {\theta} - 14 \sin^3 {\theta}+91 [(1 - \sin ^2 {\theta} )( 3\sin {\theta} - 4\sin^3 {\theta} )]

= 14 sin θ + 3 sin 2 θ 14 sin 3 θ + 91 ( 3 sin θ 7 sin 3 θ + 4 sin 5 θ ) = 14\sin {\theta} + 3 \sin^2 {\theta}- 14 \sin^3 {\theta}+91 ( 3 \sin {\theta} - 7 \sin ^3 {\theta} + 4\sin^5 {\theta} )

= 14 sin θ + 3 sin 2 θ 14 sin 3 θ + 273 sin θ 637 sin 3 θ + 364 sin 5 θ = 14\sin {\theta} + 3 \sin^2 {\theta} - 14 \sin^3 {\theta} +273 \sin {\theta} - 637 \sin ^3 {\theta} + 364 \sin^5 {\theta}

= 287 sin θ + 3 sin 2 θ 651 sin 3 θ + 364 sin 5 θ = 287 \sin {\theta} + 3 \sin^2 {\theta} - 651 \sin ^3 {\theta} + 364 \sin^5 {\theta}

The required answer = 651 × 5 = 3255 = 651 \times 5 = \boxed {3255}

This question has so less solvers and such a high level as nobody wanted to expand the hell-of-a-big thing!!

Adarsh Kumar - 6 years, 8 months ago

Problem is simple but both coefficients were multiplied wrongly instead of coefficient and highest degree of x

Kolli Venkateswarlu - 6 years, 5 months ago

You really should reword your problem statement to "the absolute value of the greatest coefficient value" or similar.

tom engelsman - 1 year, 4 months ago

solving and converting all the cos in sin, we get 364(sin(x))^5-651(sin(x))^3+3(sin(x))^2+287sin(x) highest numeric value=651, highest coefficient=5 their product=3255

somebody pls convert this in LATEX, i dont know how to do that!! thnks

A Former Brilliant Member - 6 years, 8 months ago

We can straight away see that last terms would give highest degree as 5. It will also be included in the term with biggest coefficient.
So simplifying last terms first,
N o t e : C o s 2 ( θ ) = 1 S i n 2 ( θ ) , . . . . . ( 1 ) . . . . . . a n d . . . . . . . S i n ( 3 θ ) = 3 S i n ( θ ) 4 S i n 3 ( θ ) . . . . . . ( 2 ) S i n ( 2 θ ) = 2 S i n ( θ ) C o s ( θ ) . . . . . . . ( 3 ) C o n s i d e r i n g o n l y u s e f u l t e r m s C o s 2 ( θ ) S i n ( 3 θ ) = 3 S i n ( θ ) 4 S i n 3 ( θ ) S i n 2 ( θ ) 3 S i n ( θ ) + S i n 2 ( θ ) 4 S i n 3 ( θ ) = . . . . . . . . . . . . . . . . . . . ( 4 + 3 ) S i n 3 ( θ ) + . . . . . . . . . . . . . S o 91 7 S i n 3 ( θ ) = 637 S i n 3 ( θ ) , b u t t h e r e i s S i n 3 ( θ ) i n t h e s e c o n d t e r m a l s o . B y ( 1 ) a n d ( 3 ) 7 C o s ( θ ) S i n ( 2 θ ) = 14 S i n ( θ ) ( 1 S i n 2 ( θ ) ) = . . . . . . . . . . . . . 14 S i n 3 ( θ ) . 637 14 = 651 o f S i n 3 ( θ ) a n d 5 t h d e g r e e . 651 5 = 3255. Note:Cos^2(\theta)=1 - Sin^2(\theta),.....(1)......and.......Sin(3\theta)=3*Sin(\theta) - 4*Sin^3(\theta)......(2)\\ Sin(2\theta)=2*Sin(\theta)*Cos(\theta).......(3)~~~~~Considering~only~useful~terms\\ Cos^2(\theta)*Sin(3\theta)\\ =3*Sin(\theta)-{\color{#3D99F6}{4*Sin^3(\theta)~-~~Sin^2(\theta)*3*Sin(\theta)}}+Sin^2(\theta)* 4*Sin^3(\theta)\\ =................... -(4+3)*Sin^3(\theta)+............. \\ So~- 91*7 *Sin^3(\theta) = - 637*Sin^3(\theta),~but~there~is~Sin^3(\theta)~in~the~second~term~also.\\ By~(1)~and~(3)~~7*Cos(\theta)*Sin(2\theta) =14*Sin(\theta)*(1 - Sin^2(\theta))=.............-14*Sin^3(\theta).\\ \therefore~-637-14=-651~of~Sin^3(\theta)~~and~~5th~degree.~~~~651*5=3255.

In the last correct try I forgot the "5", while first two wrong ones I did not !

Niranjan Khanderia - 3 years, 3 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...