cos 4 x − 4 sin 2 x + 2 ( cos x + sin x ) 4 = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let's expand ( cos x + sin x ) 2 = cos 2 x + sin 2 x + 2 cos x sin x = 1 + sin 2 x . (Using double angle formula for sin 2 x )
If we square this again, we get ( 1 + sin 2 x ) 2 = 1 + 2 sin 2 x + sin 2 2 x
Thus 2 ( cos x + sin x ) 4 = 2 + 4 sin 2 x + 2 sin 2 2 x .
Also, cos 4 x = cos 2 2 x − sin 2 2 x . (Using double angle formula for cos 4 x )
Now consider the sum as a whole:
cos 4 x − 4 sin 2 x + 2 ( cos x + sin x ) 4 = cos 2 2 x − sin 2 2 x − 4 sin 2 x + 2 + 4 sin 2 x + 2 sin 2 2 x = …
(Combining and rearranging terms)
= ( cos 2 2 x + sin 2 2 x ) + ( − 4 sin 2 x + 4 sin 2 x ) + 2
= 1 + 0 + 2 = 3
As the answer is a constant, you can try substitute x=0, and get 3.
Problem Loading...
Note Loading...
Set Loading...
f ( x ) = cos 4 x − 4 sin 2 x + 2 ( cos x + sin x ) 4 = 1 − 2 sin 2 2 x − 4 sin 2 x + ( cos 2 x + 2 sin x cos x + sin 2 x ) 2 = 3 − 2 ( sin 2 2 x + 2 sin 2 x + 1 ) + 2 ( sin 2 x + 1 ) 2 = 3 − 2 ( sin 2 x + 1 ) 2 + 2 ( sin 2 x + 1 ) 2 = 3