Trigonometry problem

Geometry Level 2

cos 4 x 4 sin 2 x + 2 ( cos x + sin x ) 4 = ? \cos 4x-4 \sin 2x+2(\cos x+\sin x)^4 = ?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jan 29, 2020

f ( x ) = cos 4 x 4 sin 2 x + 2 ( cos x + sin x ) 4 = 1 2 sin 2 2 x 4 sin 2 x + ( cos 2 x + 2 sin x cos x + sin 2 x ) 2 = 3 2 ( sin 2 2 x + 2 sin 2 x + 1 ) + 2 ( sin 2 x + 1 ) 2 = 3 2 ( sin 2 x + 1 ) 2 + 2 ( sin 2 x + 1 ) 2 = 3 \begin{aligned} f(x) & = \cos 4x - 4 \sin 2x + 2 (\cos x + \sin x)^4 \\ & = 1 - 2 \sin^2 2x - 4 \sin 2x + (\cos^2 x + 2\sin x \cos x + \sin^2 x)^2 \\ & = 3 - 2(\sin^2 2x + 2 \sin 2x + 1) + 2(\sin 2x + 1)^2 \\ & = 3 - 2(\sin 2x + 1)^2 + 2(\sin 2x + 1)^2 \\ & = \boxed 3 \end{aligned}

Chew-Seong Cheong - 1 year, 4 months ago
Richard Desper
Jan 29, 2020

Let's expand ( cos x + sin x ) 2 = cos 2 x + sin 2 x + 2 cos x sin x = 1 + sin 2 x (\cos x + \sin x)^2 = \cos^2 x + \sin^2 x + 2 \cos x \sin x = 1 + \sin 2x . (Using double angle formula for sin 2 x \sin 2x )

If we square this again, we get ( 1 + sin 2 x ) 2 = 1 + 2 sin 2 x + sin 2 2 x (1 + \sin 2x)^2 = 1 + 2 \sin 2x + \sin^2 2x

Thus 2 ( cos x + sin x ) 4 = 2 + 4 sin 2 x + 2 sin 2 2 x 2 (\cos x + \sin x)^4 = 2 + 4 \sin 2x + 2 \sin^2 2x .

Also, cos 4 x = cos 2 2 x sin 2 2 x \cos 4x = \cos^2 2x - \sin^2 2x . (Using double angle formula for cos 4 x \cos 4x )

Now consider the sum as a whole:

cos 4 x 4 sin 2 x + 2 ( cos x + sin x ) 4 = cos 2 2 x sin 2 2 x 4 sin 2 x + 2 + 4 sin 2 x + 2 sin 2 2 x = \cos 4x - 4 \sin 2x + 2 (\cos x + \sin x)^4 = \cos^2 2x - \sin^2 2x - 4 \sin 2x + 2 + 4 \sin 2x + 2 \sin^2 2x = \ldots

(Combining and rearranging terms)

= ( cos 2 2 x + sin 2 2 x ) + ( 4 sin 2 x + 4 sin 2 x ) + 2 = (\cos^2 2x + \sin^2 2x) + (- 4 \sin 2x + 4 \sin 2x) + 2

= 1 + 0 + 2 = 3 = 1 + 0 + 2 = 3

As the answer is a constant, you can try substitute x=0, and get 3.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...