Trigo!

Geometry Level 2

{ x = a sec 3 β tan β y = b tan 3 β sec β \large \begin{cases} x = a \sec^3 \beta \ \tan \beta \\ y = b \tan^3 \beta \ \sec \beta \end{cases}

Given the above, find sin 2 β \sin^2 \beta .

Details and assumptions:

  • a a , b b , x x , y y , sin β \sin\beta , cos β 0 \cos\beta ≠ 0 .
x y a b \frac {xy}{ab} a y b x \frac {ay}{bx} x a y b \frac xa - \frac yb x a + y b \frac xa + \frac yb

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hung Woei Neoh
Jun 30, 2016

x = a sec 3 β tan β = a ( 1 cos 3 β ) ( sin β cos β ) = a sin β cos 4 β x = a \sec^3 \beta \tan \beta\\ =a\left(\dfrac{1}{\cos^3 \beta}\right)\left(\dfrac{\sin \beta}{\cos \beta}\right)\\ =\dfrac{a \sin \beta}{\cos^4 \beta}

cos 4 β = a sin β x \implies \cos^4 \beta = \dfrac{a \sin \beta}{x}\implies Eq.(1)

y = b tan 3 β sec β = b ( sin 3 β cos 3 β ) ( 1 cos β ) = b sin 3 β cos 4 β y=b\tan^3 \beta \sec \beta\\ =b\left(\dfrac{\sin^3 \beta}{\cos^3 \beta}\right)\left(\dfrac{1}{\cos \beta}\right)\\ =\dfrac{b\sin^3 \beta}{\cos^4 \beta}

cos 4 β = b sin 3 β y \implies \cos^4 \beta = \dfrac{b\sin^3 \beta}{y}\implies Eq.(2)

Substitute Eq.(1) into Eq.(2):

a sin β x = b sin 3 β y sin 2 β = a y b x \dfrac{a \sin \beta}{x} = \dfrac{b\sin^3 \beta}{y}\\ \sin^2 \beta =\boxed{\dfrac{ay}{bx}}

Seems like we need a , b , x , y 0 a, b, x, y \neq 0 , in order for these to work out. Likely sin β , cos β 0 \sin \beta, \cos \beta \neq 0 too.

Calvin Lin Staff - 4 years, 11 months ago

Log in to reply

Let's see......

For the original equations to hold true, cos β 0 \cos \beta \neq0

For the final answer to hold true, b , x 0 b,x \neq 0

If x 0 x \neq 0 , then a , sin β 0 a, \sin \beta \neq 0 as well

b , sin β 0 b,\sin \beta \neq 0 implies that y 0 y\neq 0 as well...

So yeah, I guess all the variables here cannot be 0 0

Hung Woei Neoh - 4 years, 11 months ago
Chew-Seong Cheong
Jun 30, 2016

{ x = a sec 3 β tan β y = b tan 3 β sec β \begin{cases} x = a \sec^3 \beta \ \tan \beta \\ y = b \tan^3 \beta \ \sec \beta \end{cases}

x y = a sec 2 β b tan 2 β b x a y = 1 + tan 2 β tan 2 β = 1 tan 2 β + 1 b x a y 1 = cos 2 β sin 2 β = 1 sin 2 β sin 2 β = 1 sin 2 β 1 b x a y = 1 sin 2 β sin 2 β = a y b x \begin{aligned} \implies \frac xy & = \frac {a\sec^2 \beta}{b\tan^2 \beta} \\ \frac {bx}{ay} & = \frac {1+\tan^2 \beta}{\tan^2 \beta} \\ & = \frac 1{\tan^2 \beta} + 1 \\ \frac {bx}{ay} - 1 & = \frac {\cos^2 \beta}{\sin^2 \beta} \\ & = \frac {1 - \sin^2 \beta}{\sin^2 \beta} \\ & = \frac 1{\sin^2 \beta} - 1 \\ \implies \frac {bx}{ay} & = \frac 1{\sin^2 \beta} \\ \sin^2 \beta & = \boxed{\dfrac {ay}{bx}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...